Comparative analysis of LDR and OPT 101 detectors in reflectance type PPG sensor

Nivedita Daimiwal, M. Sundhararajan, R. Shriram
{"title":"Comparative analysis of LDR and OPT 101 detectors in reflectance type PPG sensor","authors":"Nivedita Daimiwal, M. Sundhararajan, R. Shriram","doi":"10.1109/ICCSP.2014.6950013","DOIUrl":null,"url":null,"abstract":"Detection of blood volume change in the skin by using Photoplethysmogram (PPG) sensor is based on the principle that hemoglobin in the blood absorbs infrared light than the other tissue. Favorable optical window is around 990 nm range. The reflectance type photoplethysmographic sensor is designed using two different detectors. Objective is to compare the response of PPG sensor by using Light Dependent resistors (LDR) and OPT101 as a detector. Signal is recorded by placing the sensor on a finger tip for wavelength ranging from visible to near IR (400 to 1000 nm) range. It is observed that the PPG signal captured using LDR is around 660 nm wavelength but for the OPT101 response is 500 nm to 1000 nm. That is OPT 101 can be used to capture PPG in visible and infrared region. Brain mapping using optical sensor OPT101 is preferable for the measurement of blood volume and blood flow. For source of 660 nm, LDR or OPT 101 can be used to detect the peripheral pulse. LDR is not suitable for the measurement in infrared range.","PeriodicalId":149965,"journal":{"name":"2014 International Conference on Communication and Signal Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Communication and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP.2014.6950013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Detection of blood volume change in the skin by using Photoplethysmogram (PPG) sensor is based on the principle that hemoglobin in the blood absorbs infrared light than the other tissue. Favorable optical window is around 990 nm range. The reflectance type photoplethysmographic sensor is designed using two different detectors. Objective is to compare the response of PPG sensor by using Light Dependent resistors (LDR) and OPT101 as a detector. Signal is recorded by placing the sensor on a finger tip for wavelength ranging from visible to near IR (400 to 1000 nm) range. It is observed that the PPG signal captured using LDR is around 660 nm wavelength but for the OPT101 response is 500 nm to 1000 nm. That is OPT 101 can be used to capture PPG in visible and infrared region. Brain mapping using optical sensor OPT101 is preferable for the measurement of blood volume and blood flow. For source of 660 nm, LDR or OPT 101 can be used to detect the peripheral pulse. LDR is not suitable for the measurement in infrared range.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
反射型PPG传感器中LDR与OPT 101探测器的比较分析
利用Photoplethysmogram (PPG)传感器检测皮肤的血容量变化是基于血液中的血红蛋白比其他组织吸收红外光的原理。有利的光学窗口在990nm左右。采用两种不同的检测器设计了反射式光电容积脉搏波传感器。目的是比较使用光相关电阻(LDR)和OPT101作为检测器的PPG传感器的响应。通过将传感器放在指尖上记录波长范围从可见到近红外(400至1000纳米)的信号。观察到LDR捕获的PPG信号波长约为660 nm,而OPT101的响应波长为500 nm至1000 nm。也就是说,OPT 101可以在可见光和红外波段捕获PPG。使用光学传感器OPT101进行脑成像是测量血容量和血流量的优选方法。对于660nm的光源,LDR或OPT 101可以用来检测外围脉冲。LDR不适用于红外范围内的测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and simulation of dense dielectric patch antenna for wireless applications Texture image retrieval by combining local binary pattern and discontinuity binary pattern Dynamic beacon based and load balanced geo routing in MANETs Analysis of leakage current and leakage power reduction during write operation in CMOS SRAM cell HDL implementation of 128- bit Fused Multiply Add unit for multi mode SoC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1