Clustering Tingkat Penjualan Menu (Food and Beverage) Menggunakan Algoritma K-Means

Hadi Syahputra
{"title":"Clustering Tingkat Penjualan Menu (Food and Beverage) Menggunakan Algoritma K-Means","authors":"Hadi Syahputra","doi":"10.35134/komtekinfo.v9i1.274","DOIUrl":null,"url":null,"abstract":"Menu planning in a restaurant is part of the sales strategy. Each menu has a different level of sales. To determine the effectiveness of sales and raw materials, restaurants need knowledge of what menus need to be maintained and vice versa. An analysis that can determine the sales level menu is the analysis of the k-means algorithm data mining clustering method. The source of research data is from the history of menu sales transactions for 1 year, then analyzed by the k-means algorithm. The information found is in the form of popular F&B menus and sales level menus. The purpose of this study is to group the data menu on the level of sales (Food and Beverage). The method used is the Clustering method with the performance of the K-Means algorithm. The results showed that the clustering method with the K-Means algorithm gave a significant output in grouping sales data. The research contribution provides knowledge in the form of information in conducting sales data management","PeriodicalId":403738,"journal":{"name":"Jurnal KomtekInfo","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal KomtekInfo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35134/komtekinfo.v9i1.274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Menu planning in a restaurant is part of the sales strategy. Each menu has a different level of sales. To determine the effectiveness of sales and raw materials, restaurants need knowledge of what menus need to be maintained and vice versa. An analysis that can determine the sales level menu is the analysis of the k-means algorithm data mining clustering method. The source of research data is from the history of menu sales transactions for 1 year, then analyzed by the k-means algorithm. The information found is in the form of popular F&B menus and sales level menus. The purpose of this study is to group the data menu on the level of sales (Food and Beverage). The method used is the Clustering method with the performance of the K-Means algorithm. The results showed that the clustering method with the K-Means algorithm gave a significant output in grouping sales data. The research contribution provides knowledge in the form of information in conducting sales data management
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚类Tingkat Penjualan菜单(餐饮)Menggunakan算法K-Means
餐厅的菜单规划是销售策略的一部分。每个菜单都有不同的销售水平。为了确定销售和原材料的有效性,餐厅需要了解需要维护哪些菜单,反之亦然。一种可以确定销售水平菜单的分析方法是分析k-means算法中的数据挖掘聚类方法。研究数据来源于1年的菜单销售交易历史,然后通过k-means算法进行分析。找到的信息以流行的餐饮菜单和销售级别菜单的形式出现。本研究的目的是对销售水平(食品和饮料)的数据菜单进行分组。使用的方法是具有K-Means算法性能的聚类方法。结果表明,基于K-Means算法的聚类方法在对销售数据进行分组时具有显著的输出。该研究贡献以信息的形式提供了进行销售数据管理的知识
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analytical Hierarchy Process (AHP) dalam Seleksi Penerimaan Mahasiswa Baru Analisis Metode SCRUM dalam Pengembangan E-IAPT 4.0 STMIK Royal Berbasis CodeIgniter Metode Multi Attribute Utility Theory (MAUT) untuk Sistem Pendukung Keputusan Pemilihan Mobil Bekas Implementasi Payment Gateway dengan Menggunakan Midtrans pada Website UMKM Geberco Penerapan Metode Certainty dalam Deteksi Penyakit Sapi Potong
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1