A Dynamic Task Offloading Strategy for Power Distribution IoT based on Energy Consumption

Zhi Li, Di Liu, Xiao Liao, Shi Feng, Xueying Ding, Wei Cui
{"title":"A Dynamic Task Offloading Strategy for Power Distribution IoT based on Energy Consumption","authors":"Zhi Li, Di Liu, Xiao Liao, Shi Feng, Xueying Ding, Wei Cui","doi":"10.1145/3585967.3585973","DOIUrl":null,"url":null,"abstract":"Based on edge computing, wireless communication, and other technologies, the power distribution Internet of Things with edge IoT agent as the core, will realize comprehensive perception, data fusion, and intelligent application of power distribution network, and effectively promote the rapid development of the power grid. However, the power usage efficiency (PUE) of the edge IoT agent is the bottleneck in achieving the distribution network's sustainable computing. The edge IoT agent of power distribution Internet of Things network faces the problem of green sustainability. This paper focuses on the computing resource allocation of edge IoT agents in power distribution IoT, designs an energy-efficient green task offloading framework, and proposes an efficient dynamic task offloading strategy. The numerical results show that the task offloading strategy proposed in this paper can ensure the reasonable allocation of power distribution IoT business resources while reducing energy consumption.","PeriodicalId":275067,"journal":{"name":"Proceedings of the 2023 10th International Conference on Wireless Communication and Sensor Networks","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 10th International Conference on Wireless Communication and Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3585967.3585973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Based on edge computing, wireless communication, and other technologies, the power distribution Internet of Things with edge IoT agent as the core, will realize comprehensive perception, data fusion, and intelligent application of power distribution network, and effectively promote the rapid development of the power grid. However, the power usage efficiency (PUE) of the edge IoT agent is the bottleneck in achieving the distribution network's sustainable computing. The edge IoT agent of power distribution Internet of Things network faces the problem of green sustainability. This paper focuses on the computing resource allocation of edge IoT agents in power distribution IoT, designs an energy-efficient green task offloading framework, and proposes an efficient dynamic task offloading strategy. The numerical results show that the task offloading strategy proposed in this paper can ensure the reasonable allocation of power distribution IoT business resources while reducing energy consumption.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于能耗的配电物联网动态任务卸载策略
基于边缘计算、无线通信等技术,以边缘物联网代理为核心的配电物联网,将实现对配电网的全面感知、数据融合和智能化应用,有效促进电网的快速发展。然而,边缘物联网代理的功率使用效率(PUE)是实现配电网可持续计算的瓶颈。配电物联网边缘物联网代理面临绿色可持续性问题。本文针对配电物联网中边缘物联网agent的计算资源分配问题,设计了一种节能的绿色任务卸载框架,提出了一种高效的动态任务卸载策略。数值结果表明,本文提出的任务分流策略能够在保证配电物联网业务资源合理分配的同时降低能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of border security system based on ultrasonic technology and video linkage A research of convolutional neural network model deployment in low- to medium-performance microcontrollers An SISO-OTFS Channel Parameter Learning Scheme in Time-Frequency Domain Research on Sampling Estimation Method for Complex Networks-Oriented Network Autonomous Learning Monitoring System Based on SVM Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1