Influential Performance of Nodes Identified by Relative Entropy in Dynamic Networks

Péter Marjai, A. Kiss
{"title":"Influential Performance of Nodes Identified by Relative Entropy in Dynamic Networks","authors":"Péter Marjai, A. Kiss","doi":"10.1142/s2196888821500032","DOIUrl":null,"url":null,"abstract":"For decades, centrality has been one of the most studied concepts in the case of complex networks. It addresses the problem of identification of the most influential nodes in the network. Despite the large number of the proposed methods for measuring centrality, each method takes different characteristics of the networks into account while identifying the “vital” nodes, and for the same reason, each has its advantages and drawbacks. To resolve this problem, the TOPSIS method combined with relative entropy can be used. Several of the already existing centrality measures have been developed to be effective in the case of static networks, however, there is an ever-increasing interest to determine crucial nodes in dynamic networks. In this paper, we are investigating the performance of a new method that identifies influential nodes based on relative entropy, in the case of dynamic networks. To classify the effectiveness, the Suspected-Infected model is used as an information diffusion process. We are investigating the average infection capacity of ranked nodes, the Time-Constrained Coverage as well as the Cover Time.","PeriodicalId":256649,"journal":{"name":"Vietnam. J. Comput. Sci.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam. J. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2196888821500032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

For decades, centrality has been one of the most studied concepts in the case of complex networks. It addresses the problem of identification of the most influential nodes in the network. Despite the large number of the proposed methods for measuring centrality, each method takes different characteristics of the networks into account while identifying the “vital” nodes, and for the same reason, each has its advantages and drawbacks. To resolve this problem, the TOPSIS method combined with relative entropy can be used. Several of the already existing centrality measures have been developed to be effective in the case of static networks, however, there is an ever-increasing interest to determine crucial nodes in dynamic networks. In this paper, we are investigating the performance of a new method that identifies influential nodes based on relative entropy, in the case of dynamic networks. To classify the effectiveness, the Suspected-Infected model is used as an information diffusion process. We are investigating the average infection capacity of ranked nodes, the Time-Constrained Coverage as well as the Cover Time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态网络中相对熵对节点性能的影响
几十年来,中心性一直是复杂网络中研究最多的概念之一。它解决了识别网络中最具影响力节点的问题。尽管提出了大量测量中心性的方法,但每种方法在识别“重要”节点时都考虑了网络的不同特征,并且出于同样的原因,每种方法都有其优点和缺点。为了解决这一问题,可以采用结合相对熵的TOPSIS方法。已有的几个中心性措施已发展为在静态网络的情况下是有效的,但是,人们对确定动态网络中的关键节点的兴趣日益增加。在本文中,我们正在研究动态网络中基于相对熵识别影响节点的新方法的性能。为了对有效性进行分类,将疑似感染模型作为信息扩散过程。我们正在研究排名节点的平均感染能力,时间约束覆盖率以及覆盖时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving Arabic Sentiment Analysis Using LSTM Based on Word Embedding Models Synthetic Data Generation for Morphological Analyses of Histopathology Images with Deep Learning Models Generating Popularity-Aware Reciprocal Recommendations Using Siamese Bi-Directional Gated Recurrent Units Network Hyperparameter Optimization of a Parallelized LSTM for Time Series Prediction Natural Language Processing and Sentiment Analysis on Bangla Social Media Comments on Russia-Ukraine War Using Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1