Compound Exemplar Based Object Detection by Incremental Random Forest

Kai Ma, J. Ben-Arie
{"title":"Compound Exemplar Based Object Detection by Incremental Random Forest","authors":"Kai Ma, J. Ben-Arie","doi":"10.1109/ICPR.2014.417","DOIUrl":null,"url":null,"abstract":"This paper describes a new hybrid detection method that combines exemplar based approach with discriminative patch selection. More specifically, we applied a modified random forest for retrieval of input similar local patches of stored exemplars while rejecting background patches. A recursive algorithm based on dynamic programming 2D matching optimization is applied after the aforementioned patch retrieving stage in order to enforce geometric constraints of object patches. Our proposed approach demonstrates experimentally that it performs well while maintaining the capability for incremental learning.","PeriodicalId":142159,"journal":{"name":"2014 22nd International Conference on Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2014.417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper describes a new hybrid detection method that combines exemplar based approach with discriminative patch selection. More specifically, we applied a modified random forest for retrieval of input similar local patches of stored exemplars while rejecting background patches. A recursive algorithm based on dynamic programming 2D matching optimization is applied after the aforementioned patch retrieving stage in order to enforce geometric constraints of object patches. Our proposed approach demonstrates experimentally that it performs well while maintaining the capability for incremental learning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于复合样例的增量随机森林目标检测
本文提出了一种将基于样例的方法与判别式斑块选择相结合的混合检测方法。更具体地说,我们应用了一个改进的随机森林来检索存储样本的输入相似的局部补丁,同时拒绝背景补丁。在上述补丁检索阶段之后,采用基于动态规划的二维匹配优化递归算法来加强目标补丁的几何约束。实验表明,该方法在保持增量学习能力的同时表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-Time Tracking via Deformable Structure Regression Learning Traffic Camera Anomaly Detection Velocity-Based Multiple Change-Point Inference for Unsupervised Segmentation of Human Movement Behavior Volume Reconstruction for MRI Anomaly Detection through Spatio-temporal Context Modeling in Crowded Scenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1