Model of distributed space power system motion control

O. Palii, E. Lapkhanov, D. Svorobin
{"title":"Model of distributed space power system motion control","authors":"O. Palii, E. Lapkhanov, D. Svorobin","doi":"10.15407/itm2022.04.035","DOIUrl":null,"url":null,"abstract":"The goal of this article is to develop a generalized mathematical model for controlling the motion of the spacecraft of a space industrial platform’s distributed power system. Space industrialization is one of the promising lines of industrial development in the world. The development of space industrial technologies will allow one to solve a number of problems in the production of unique products unavailable under terrestrial conditions. The main types of these products include semiconductor materials, materials made by 3D printing in microgravity, space modules of sunshade systems, space metallurgy products, space debris processing products, and high-purity space biology substances. Taking this into account, a certain amount of electricity is required for the manufacture of one or another product. Given that some space industrial processes can consume a significant amount of electricity, a space industrial platform's own power generation may not be sufficient. Because of this, it was proposed to use additional energy resources through the development of a distributed power supply system for a space industrial platform. A group of power spacecraft is envisaged to collect and accumulate electric energy and transmit it in a contactless way to the receivers of the space industrial platform. The article presents mathematical models for the analysis of the orbital, angular, and relative motion of power spacecraft and receiver spacecraft. Algorithms are proposed for calculating the parameters of the power spacecraft orientation and stabilization system. A generalized model is constructed for determining the maximum distance and time interval of power spacecraft to platform electric power transmission using microwave radiation. The model developed allows one to choose the power spacecraft design parameters at the stage of conceptual design of space industrial platform power systems.","PeriodicalId":287730,"journal":{"name":"Technical mechanics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/itm2022.04.035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this article is to develop a generalized mathematical model for controlling the motion of the spacecraft of a space industrial platform’s distributed power system. Space industrialization is one of the promising lines of industrial development in the world. The development of space industrial technologies will allow one to solve a number of problems in the production of unique products unavailable under terrestrial conditions. The main types of these products include semiconductor materials, materials made by 3D printing in microgravity, space modules of sunshade systems, space metallurgy products, space debris processing products, and high-purity space biology substances. Taking this into account, a certain amount of electricity is required for the manufacture of one or another product. Given that some space industrial processes can consume a significant amount of electricity, a space industrial platform's own power generation may not be sufficient. Because of this, it was proposed to use additional energy resources through the development of a distributed power supply system for a space industrial platform. A group of power spacecraft is envisaged to collect and accumulate electric energy and transmit it in a contactless way to the receivers of the space industrial platform. The article presents mathematical models for the analysis of the orbital, angular, and relative motion of power spacecraft and receiver spacecraft. Algorithms are proposed for calculating the parameters of the power spacecraft orientation and stabilization system. A generalized model is constructed for determining the maximum distance and time interval of power spacecraft to platform electric power transmission using microwave radiation. The model developed allows one to choose the power spacecraft design parameters at the stage of conceptual design of space industrial platform power systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分布式空间电力系统运动控制模型
本文的目标是建立一个广义的数学模型来控制航天工业平台分布式电源系统的航天器运动。航天工业化是世界工业发展的重要方向之一。空间工业技术的发展将使人们能够解决生产在地面条件下无法获得的独特产品的若干问题。这些产品的主要类型包括半导体材料、微重力3D打印材料、遮阳系统空间模块、空间冶金制品、空间碎片处理制品、高纯度空间生物物质等。考虑到这一点,制造一种或另一种产品需要一定数量的电力。考虑到一些空间工业过程可能消耗大量电力,空间工业平台本身的发电可能是不够的。因此,建议通过为空间工业平台开发分布式电源系统来使用额外的能源资源。设想一组动力航天器收集和积累电能,并以非接触方式将其传输到空间工业平台的接收器。本文建立了动力航天器和接收航天器轨道运动、角运动和相对运动分析的数学模型。提出了动力航天器定向稳定系统参数的计算算法。建立了利用微波辐射确定动力航天器与平台电力传输最大距离和时间间隔的广义模型。该模型可用于航天工业平台动力系统概念设计阶段的动力航天器设计参数选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Determining the coefficients of a hydrodynamic model of cavitating pumps of liquid-propellant rocket engines from their theoretical transfer matrices Methodological features of in-group evaluation of experts’ competence in determining the efficiency of space-rocket complexes Finite-element model of a vertical tank on a rigid foundation Mathematical model for selecting the auxiliary equipment parameters of aerodynamic deorbit systems Deployment of a space tether in a centrifugal force field with alignment to the local vertical
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1