Using Concurrent fNIRS and EEG Measurements to Study Consumer's Preference

Shima Kaheh, Maria Ramirez, K. George
{"title":"Using Concurrent fNIRS and EEG Measurements to Study Consumer's Preference","authors":"Shima Kaheh, Maria Ramirez, K. George","doi":"10.1109/iemcon53756.2021.9623092","DOIUrl":null,"url":null,"abstract":"Neuromarketing research has emerged as an innovative method of collecting accurate consumer data for understanding consumer decisions and improving marketing efforts. Using neurophysiological measures with devices such as eye trackers, functional magnetic resonance imaging (fMRI), Electroencephalogram (EEG), heart rate variability (HRV), and galvanic skin response (GSR), researchers can collect sensitive measures of consumers' reactions to different stimuli and reveal hidden information about the consumer experience without having to ask the consumer directly. This information may be used by marketers to influence purchasing behavior and increase sales. In this paper, we use simultaneous measurements of EEG and functional near-infrared spectroscopy (fNIRS), combined with galvanic skin response (GSR) and heart rate variability (HRV) measurements, to investigate the effect of pricing on subjects' product preference.","PeriodicalId":272590,"journal":{"name":"2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iemcon53756.2021.9623092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Neuromarketing research has emerged as an innovative method of collecting accurate consumer data for understanding consumer decisions and improving marketing efforts. Using neurophysiological measures with devices such as eye trackers, functional magnetic resonance imaging (fMRI), Electroencephalogram (EEG), heart rate variability (HRV), and galvanic skin response (GSR), researchers can collect sensitive measures of consumers' reactions to different stimuli and reveal hidden information about the consumer experience without having to ask the consumer directly. This information may be used by marketers to influence purchasing behavior and increase sales. In this paper, we use simultaneous measurements of EEG and functional near-infrared spectroscopy (fNIRS), combined with galvanic skin response (GSR) and heart rate variability (HRV) measurements, to investigate the effect of pricing on subjects' product preference.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用fNIRS和EEG同时测量研究消费者偏好
神经营销研究已经成为一种创新的方法来收集准确的消费者数据,以了解消费者的决定和改善营销工作。利用眼动仪、功能性磁共振成像(fMRI)、脑电图(EEG)、心率变异性(HRV)和皮肤电反应(GSR)等设备的神经生理学测量,研究人员可以收集消费者对不同刺激反应的敏感测量,并在无需直接询问消费者的情况下揭示消费者体验的隐藏信息。这些信息可以被营销人员用来影响购买行为和增加销售。在本文中,我们使用EEG和功能性近红外光谱(fNIRS)同时测量,结合皮肤电反应(GSR)和心率变异性(HRV)测量,研究价格对受试者产品偏好的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximization of the User Association of a Low-Power Tier Deploying Biased User Association Scheme in 5G Multi-Tier Heterogeneous Network A Deep Reinforcement Learning: Location-based Resource Allocation for Congested C-V2X Scenario A Deep Learning Approach to Predict Chronic Kidney Disease in Human Evaluation of a bio-socially inspired secure DSA scheme using testbed-calibrated hybrid simulations Siamese Network based Pulse and Signal Attribute Identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1