{"title":"Controllability and optimal strokes for N-link microswimmer","authors":"L. Giraldi, P. Martinon, M. Zoppello","doi":"10.1109/CDC.2013.6760480","DOIUrl":null,"url":null,"abstract":"In this paper we focus on the N-link swimmer [1], a generalization of the classical 3-link Purcell swimmer [18]. We use the Resistive Force Theory to express the equation of motion in a fluid with a low Reynolds number, see for instance [12]. We prove that the swimmer is controllable in the whole plane for N ≥ 3 and for almost every set of stick lengths. As a direct result, there exists an optimal swimming strategy to reach a desired configuration in minimum time. Numerical experiments for N = 3 (Purcell swimmer) suggest that the optimal strategy is periodic, namely a sequence of identical strokes. Our results indicate that this candidate for an optimal stroke indeed gives a better displacement speed than the classical Purcell stroke.","PeriodicalId":415568,"journal":{"name":"52nd IEEE Conference on Decision and Control","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"52nd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2013.6760480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39
Abstract
In this paper we focus on the N-link swimmer [1], a generalization of the classical 3-link Purcell swimmer [18]. We use the Resistive Force Theory to express the equation of motion in a fluid with a low Reynolds number, see for instance [12]. We prove that the swimmer is controllable in the whole plane for N ≥ 3 and for almost every set of stick lengths. As a direct result, there exists an optimal swimming strategy to reach a desired configuration in minimum time. Numerical experiments for N = 3 (Purcell swimmer) suggest that the optimal strategy is periodic, namely a sequence of identical strokes. Our results indicate that this candidate for an optimal stroke indeed gives a better displacement speed than the classical Purcell stroke.