{"title":"A Formal Approach to Cyber-Physical Attacks","authors":"R. Lanotte, Massimo Merro, R. Muradore, L. Viganò","doi":"10.1109/CSF.2017.12","DOIUrl":null,"url":null,"abstract":"We apply formal methods to lay and streamline theoretical foundations to reason about Cyber-Physical Systems (CPSs) and cyber-physical attacks. We focus on integrity and DoS attacks to sensors and actuators of CPSs, and on the timing aspects of these attacks. Our contributions are threefold: (1) we define a hybrid process calculus to model both CPSs and cyber-physical attacks. (2) we define a threat model of cyber-physical attacks and provide the means to assess attack tolerance/vulnerability with respect to a given attack. (3) we formalise how to estimate the impact of a successful attack on a CPS and investigate possible quantifications of the success chances of an attack. We illustrate definitions and results by means of a non-trivial engineering application.","PeriodicalId":269696,"journal":{"name":"2017 IEEE 30th Computer Security Foundations Symposium (CSF)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 30th Computer Security Foundations Symposium (CSF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSF.2017.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49
Abstract
We apply formal methods to lay and streamline theoretical foundations to reason about Cyber-Physical Systems (CPSs) and cyber-physical attacks. We focus on integrity and DoS attacks to sensors and actuators of CPSs, and on the timing aspects of these attacks. Our contributions are threefold: (1) we define a hybrid process calculus to model both CPSs and cyber-physical attacks. (2) we define a threat model of cyber-physical attacks and provide the means to assess attack tolerance/vulnerability with respect to a given attack. (3) we formalise how to estimate the impact of a successful attack on a CPS and investigate possible quantifications of the success chances of an attack. We illustrate definitions and results by means of a non-trivial engineering application.