Enabling high-fidelity spectroscopic analysis of plutonium with machine learning

A. Rao, Phillip R. Jenkins, A. Patnaik
{"title":"Enabling high-fidelity spectroscopic analysis of plutonium with machine learning","authors":"A. Rao, Phillip R. Jenkins, A. Patnaik","doi":"10.1364/lacsea.2022.lf1c.1","DOIUrl":null,"url":null,"abstract":"Machine learning methods are constructed to perform analysis of plutonium surrogate material. Decision tree based methods yield predictive models for quantifying gallium from optical emission spectra with sensitivities as low as 0.006 wt%.","PeriodicalId":231405,"journal":{"name":"Optical Sensors and Sensing Congress 2022 (AIS, LACSEA, Sensors, ES)","volume":"170 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Sensors and Sensing Congress 2022 (AIS, LACSEA, Sensors, ES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/lacsea.2022.lf1c.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning methods are constructed to perform analysis of plutonium surrogate material. Decision tree based methods yield predictive models for quantifying gallium from optical emission spectra with sensitivities as low as 0.006 wt%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过机器学习实现对钚的高保真光谱分析
构建了机器学习方法来执行钚替代材料的分析。基于决策树的方法产生了从光学发射光谱定量镓的预测模型,灵敏度低至0.006 wt%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-Frequency Raman and THz Time-Domain Spectroscopy of Prehnite and Turquoise: Linking structure to stability Measuring the Optical Constants for Adaptable Spectral Libraries Self-Assembled Plasmonic Array Sensors for Cannabinoids A High Spatial Resolution Distributed Acoustic Sensor based on Ultra Low-loss Enhanced Backscattering Fiber Frequency Scale Calibration for High-Resolution Quantum Cascade Laser Dual-Comb Spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1