Neural Evidence Integration Model and Its Application

Shouzhi Wei, N. Jin, Hui Liu
{"title":"Neural Evidence Integration Model and Its Application","authors":"Shouzhi Wei, N. Jin, Hui Liu","doi":"10.1109/ICNC.2007.494","DOIUrl":null,"url":null,"abstract":"The oilfield remaining oil distribution forecast is called world-level difficult problems by oil domain specialists in the world. The source of low forecast correctness are only consider objective evidences or subjective evidence, so the forecast results still exist limitation, it result in low accuracy, reliability and so on to identify the classification characteristics and to compute quantitative parameters. So, how to fuse all objective evidences and subjective evidences is a key problem to research remaining oil distribution. A new model is proposed, it integrated BP neural networks combination models and two-level D-S evidence reasoning models, the exact classification results are implemented about many remaining oil distribution characteristics. The classification output reliability of each BP network and the reasoning result reliability of each domain fuzzy expert system are regarded as basic probability assignment of input evidence in D-S evidence reasoning model. The model has applied successfully in Daqing Oilfield of China.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The oilfield remaining oil distribution forecast is called world-level difficult problems by oil domain specialists in the world. The source of low forecast correctness are only consider objective evidences or subjective evidence, so the forecast results still exist limitation, it result in low accuracy, reliability and so on to identify the classification characteristics and to compute quantitative parameters. So, how to fuse all objective evidences and subjective evidences is a key problem to research remaining oil distribution. A new model is proposed, it integrated BP neural networks combination models and two-level D-S evidence reasoning models, the exact classification results are implemented about many remaining oil distribution characteristics. The classification output reliability of each BP network and the reasoning result reliability of each domain fuzzy expert system are regarded as basic probability assignment of input evidence in D-S evidence reasoning model. The model has applied successfully in Daqing Oilfield of China.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经证据集成模型及其应用
油田剩余油分布预测被世界石油领域专家称为世界级难题。预测正确性低的来源仅考虑客观证据或主观证据,因此预测结果仍存在局限性,导致分类特征识别和定量参数计算的准确性、可靠性低等问题。因此,如何融合客观证据和主观证据是研究剩余油分布的关键问题。将BP神经网络组合模型与两级D-S证据推理模型相结合,提出了一种新的模型,实现了多种剩余油分布特征的精确分类结果。在D-S证据推理模型中,将每个BP网络的分类输出可靠性和每个领域模糊专家系统的推理结果可靠性作为输入证据的基本概率分配。该模型已在大庆油田成功应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emotional Evaluation of Color Patterns Based on Rough Sets Uniqueness of Linear Combinations of Ridge Functions PID Neural Network Temperature Control System in Plastic Injecting-moulding Machine The Study of Membrane Fouling Modeling Method Based on Wavelet Neural Network for Sewage Treatment Membrane Bioreactor Simulation and Research of the PCB Vias Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1