{"title":"Research on Interaction of Exposure Operation in Virtual Surgery","authors":"Pan Zhou, Quanyu Wang","doi":"10.1109/ICVRV.2017.00042","DOIUrl":null,"url":null,"abstract":"To achieve better interactivity in virtual surgery system, based on the exposure of surgery view using retractors, which is the basic surgery operation, study in the interaction technology in virtual surgery was carried out. In this paper, we presented a solution to solve the problem that the current methods cannot achieve good accuracy in location and high quality in visual feedback while satisfying the refresh rate. We chose handle to be the interactive equipment, the combination of inertial sensor location method and laser positioning method was applied to spatial location of handle, which can not only guarantee the accuracy, but also make the final output data smoother and the update rate soars. Visual feedback is the main function in the human body model interaction, we proposed an improved Mass Spring Damper model, which includes both surface grid and skeleton grid, and in addition connects particles on the surface grid and internal skeleton grid through the spring, to effectively support the mesh surface and prevent hyperelastic deformation. Finally, experiments were conducted and results show that the methods above achieve higher accuracy and efficiency in interaction.","PeriodicalId":187934,"journal":{"name":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","volume":"398 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRV.2017.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To achieve better interactivity in virtual surgery system, based on the exposure of surgery view using retractors, which is the basic surgery operation, study in the interaction technology in virtual surgery was carried out. In this paper, we presented a solution to solve the problem that the current methods cannot achieve good accuracy in location and high quality in visual feedback while satisfying the refresh rate. We chose handle to be the interactive equipment, the combination of inertial sensor location method and laser positioning method was applied to spatial location of handle, which can not only guarantee the accuracy, but also make the final output data smoother and the update rate soars. Visual feedback is the main function in the human body model interaction, we proposed an improved Mass Spring Damper model, which includes both surface grid and skeleton grid, and in addition connects particles on the surface grid and internal skeleton grid through the spring, to effectively support the mesh surface and prevent hyperelastic deformation. Finally, experiments were conducted and results show that the methods above achieve higher accuracy and efficiency in interaction.