Improving server performance on transaction processing workloads by enhanced data placement

J. Rubio, C. Lefurgy, L. John
{"title":"Improving server performance on transaction processing workloads by enhanced data placement","authors":"J. Rubio, C. Lefurgy, L. John","doi":"10.1109/CAHPC.2004.22","DOIUrl":null,"url":null,"abstract":"Modern servers access large volumes of data while running commercial workloads. The data is typically spread among several storage devices (e.g. disks). Carefully placing the data across the storage devices can minimize costly remote accesses and improve performance. We propose the use of simulated annealing to arrive at an effective layout of data on disk. The proposed technique considers the configuration of the system and the cost of data movement. An initial layout globally optimized across all queries, shows speedups of up to 13% for a group of DSS queries and up to 6% for selected OLTP queries. This technique can be re-applied at run-time to further improve performance beyond the initial, globally optimized data layout. This scheme monitors architecture parameters to prevent optimizations of multiple operations to conflict with each other. Such a dynamic reorganization results in speedups of up to 23% for the DSS queries and up to 10% for the OLTP queries.","PeriodicalId":375288,"journal":{"name":"16th Symposium on Computer Architecture and High Performance Computing","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"16th Symposium on Computer Architecture and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAHPC.2004.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Modern servers access large volumes of data while running commercial workloads. The data is typically spread among several storage devices (e.g. disks). Carefully placing the data across the storage devices can minimize costly remote accesses and improve performance. We propose the use of simulated annealing to arrive at an effective layout of data on disk. The proposed technique considers the configuration of the system and the cost of data movement. An initial layout globally optimized across all queries, shows speedups of up to 13% for a group of DSS queries and up to 6% for selected OLTP queries. This technique can be re-applied at run-time to further improve performance beyond the initial, globally optimized data layout. This scheme monitors architecture parameters to prevent optimizations of multiple operations to conflict with each other. Such a dynamic reorganization results in speedups of up to 23% for the DSS queries and up to 10% for the OLTP queries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过增强数据放置,提高事务处理工作负载上的服务器性能
现代服务器在运行商业工作负载时访问大量数据。数据通常分布在几个存储设备(如磁盘)中。小心地跨存储设备放置数据可以最大限度地减少昂贵的远程访问并提高性能。我们建议使用模拟退火来达到磁盘上数据的有效布局。所提出的技术考虑了系统的配置和数据移动的成本。对所有查询进行全局优化的初始布局显示,一组DSS查询的速度提高了13%,所选OLTP查询的速度提高了6%。可以在运行时重新应用此技术,以进一步提高初始的全局优化数据布局之外的性能。该方案监视体系结构参数,以防止多个操作的优化相互冲突。这种动态重组可以使DSS查询的速度提高23%,OLTP查询的速度提高10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A study of errant pipeline flushes caused by value misspeculation A performance evaluation of a quorum-based state-machine replication algorithm for computing grids Cache filtering techniques to reduce the negative impact of useless speculative memory references on processor performance ArchC: a systemC-based architecture description language Optimizations for compiled simulation using instruction type information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1