On Matrix Momentum Stochastic Approximation and Applications to Q-learning

Adithya M. Devraj, A. Bušić, Sean P. Meyn
{"title":"On Matrix Momentum Stochastic Approximation and Applications to Q-learning","authors":"Adithya M. Devraj, A. Bušić, Sean P. Meyn","doi":"10.1109/ALLERTON.2019.8919828","DOIUrl":null,"url":null,"abstract":"Stochastic approximation (SA) algorithms are recursive techniques used to obtain the roots of functions that can be expressed as expectations of a noisy parameterized family of functions. In this paper two new SA algorithms are introduced: 1) PolSA, an extension of Polyak’s momentum technique with a specially designed matrix momentum, and 2) NeSA, which can either be regarded as a variant of Nesterov’s acceleration method, or a simplification of PolSA. The rates of convergence of SA algorithms is well understood. Under special conditions, the mean square error of the parameter estimates is bounded by $\\sigma^{2}/n+o(1/n)$, where $\\sigma^{2} \\geq 0$ is an identifiable constant. If these conditions fail, the rate is typically sub-linear. There are two well known SA algorithms that ensure a linear rate, with minimal value of variance, $\\sigma^{2}$: the Ruppert-Polyak averaging technique, and the stochastic Newton-Raphson (SNR) algorithm. It is demonstrated here that under mild technical assumptions, the PolSA algorithm also achieves this optimality criteria. This result is established via novel coupling arguments: It is shown that the parameter estimates obtained from the PolSA algorithm couple with those of the optimal variance (but computationally more expensive) SNR algorithm, at a rate $O(1/n^{2})$. The newly proposed algorithms are extended to a reinforcement learning setting to obtain new Q-learning algorithms, and numerical results confirm the coupling of PolSA and SNR.","PeriodicalId":120479,"journal":{"name":"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2019.8919828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Stochastic approximation (SA) algorithms are recursive techniques used to obtain the roots of functions that can be expressed as expectations of a noisy parameterized family of functions. In this paper two new SA algorithms are introduced: 1) PolSA, an extension of Polyak’s momentum technique with a specially designed matrix momentum, and 2) NeSA, which can either be regarded as a variant of Nesterov’s acceleration method, or a simplification of PolSA. The rates of convergence of SA algorithms is well understood. Under special conditions, the mean square error of the parameter estimates is bounded by $\sigma^{2}/n+o(1/n)$, where $\sigma^{2} \geq 0$ is an identifiable constant. If these conditions fail, the rate is typically sub-linear. There are two well known SA algorithms that ensure a linear rate, with minimal value of variance, $\sigma^{2}$: the Ruppert-Polyak averaging technique, and the stochastic Newton-Raphson (SNR) algorithm. It is demonstrated here that under mild technical assumptions, the PolSA algorithm also achieves this optimality criteria. This result is established via novel coupling arguments: It is shown that the parameter estimates obtained from the PolSA algorithm couple with those of the optimal variance (but computationally more expensive) SNR algorithm, at a rate $O(1/n^{2})$. The newly proposed algorithms are extended to a reinforcement learning setting to obtain new Q-learning algorithms, and numerical results confirm the coupling of PolSA and SNR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
矩阵动量随机逼近及其在q学习中的应用
随机逼近(SA)算法是一种递归技术,用于获得函数的根,这些函数可以表示为噪声参数化函数族的期望。本文介绍了两种新的SA算法:1)PolSA,它是Polyak动量技术的扩展,具有特殊设计的矩阵动量;2)NeSA,它可以看作是Nesterov加速方法的一种变体,也可以看作是PolSA的一种简化。SA算法的收敛速度是很容易理解的。在特殊条件下,参数估计的均方误差以$\sigma^{2}/n+o(1/n)$为界,其中$\sigma^{2} \geq 0$为可识别常数。如果这些条件不满足,速率通常是次线性的。有两种众所周知的SA算法可以确保线性速率,方差值最小,$\sigma^{2}$: Ruppert-Polyak平均技术和随机牛顿-拉夫森(SNR)算法。这里证明,在温和的技术假设下,PolSA算法也达到了这一最优性准则。这一结果是通过新颖的耦合参数建立的:结果表明,从PolSA算法获得的参数估计与最优方差(但计算成本更高)信噪比算法的参数估计以$O(1/n^{2})$的速率耦合。将新提出的算法扩展到一个强化学习环境,得到新的q -学习算法,数值结果证实了PolSA和信噪比的耦合性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Sequential Gradient-Based Multiple Access for Distributed Learning over Fading Channels Scheduling Policies for Minimizing Job Migration and Server Running Costs for Cloud Computing Platforms Explicit Low-complexity Codes for Multiple Access Channel Resolvability Byzantine Fault-Tolerant Parallelized Stochastic Gradient Descent for Linear Regression Deep Reinforcement Learning Based Power Control for Wireless Multicast Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1