Measures for recommendations based on past students' activity

M. Huptych, Michal Bohuslavek, Martin Hlosta, Z. Zdráhal
{"title":"Measures for recommendations based on past students' activity","authors":"M. Huptych, Michal Bohuslavek, Martin Hlosta, Z. Zdráhal","doi":"10.1145/3027385.3027426","DOIUrl":null,"url":null,"abstract":"This paper introduces two measures for the recommendation of study materials based on students' past study activity. We use records from the Virtual Learning Environment (VLE) and analyse the activity of previous students. We assume that the activity of past students represents patterns, which can be used as a basis for recommendations to current students. The measures we define are Relevance, for description of a supposed VLE activity derived from previous students of the course, and Effort, that represents the actual effort of individual current students. Based on these measures, we propose a composite measure, which we call Importance. We use data from the previous course presentations to evaluate of the consistency of students' behaviour. We use correlation of the defined measures Relevance and Average Effort to evaluate the behaviour of two different student cohorts and the Root Mean Square Error to measure the deviation of Average Effort and individual student Effort.","PeriodicalId":160897,"journal":{"name":"Proceedings of the Seventh International Learning Analytics & Knowledge Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh International Learning Analytics & Knowledge Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3027385.3027426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper introduces two measures for the recommendation of study materials based on students' past study activity. We use records from the Virtual Learning Environment (VLE) and analyse the activity of previous students. We assume that the activity of past students represents patterns, which can be used as a basis for recommendations to current students. The measures we define are Relevance, for description of a supposed VLE activity derived from previous students of the course, and Effort, that represents the actual effort of individual current students. Based on these measures, we propose a composite measure, which we call Importance. We use data from the previous course presentations to evaluate of the consistency of students' behaviour. We use correlation of the defined measures Relevance and Average Effort to evaluate the behaviour of two different student cohorts and the Root Mean Square Error to measure the deviation of Average Effort and individual student Effort.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于以往学生活动的推荐措施
本文介绍了根据学生过去的学习活动推荐学习材料的两种措施。我们使用虚拟学习环境(VLE)中的记录,分析以往学生的学习活动。我们认为,以往学生的学习活动代表了一种模式,可以作为向当前学生推荐学习材料的依据。我们定义的衡量标准是相关性(Relevance)和努力程度(Effort),前者用于描述从课程的以往学生那里获得的假定 VLE 活动,后者代表了当前学生个人的实际努力程度。在这些衡量标准的基础上,我们提出了一个综合衡量标准,我们称之为 "重要性"。我们使用以前课程演示的数据来评估学生行为的一致性。我们使用已定义的 "相关性 "和 "平均努力程度 "的相关性来评估两个不同学生群体的行为,并使用均方根误差来衡量平均努力程度与学生个人努力程度之间的偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An information policy perspective on learning analytics When learning is high stake How can we accelerate dissemination of knowledge and learning?: developing an online knowledge management platform for networked improvement communities LAK17 hackathon: getting the right information to the right people so they can take the right action Strategies for data and learning analytics informed national education policies: the case of Uruguay
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1