Can Predictive Filters Detect Gradually Ramping False Data Injection Attacks Against PMUs?

Zhigang Chu, Andrea Pinceti, R. Biswas, O. Kosut, A. Pal, L. Sankar
{"title":"Can Predictive Filters Detect Gradually Ramping False Data Injection Attacks Against PMUs?","authors":"Zhigang Chu, Andrea Pinceti, R. Biswas, O. Kosut, A. Pal, L. Sankar","doi":"10.1109/SmartGridComm.2019.8909739","DOIUrl":null,"url":null,"abstract":"Intelligently designed false data injection (FDI) attacks have been shown to be able to bypass the χ2-test based bad data detector (BDD), resulting in physical consequences (such as line overloads) in the power system. In this paper, using synthetic PMU measurements and intelligently designed FDI attacks, it is shown that if an attack is suddenly injected into the system, a predictive filter with sufficient accuracy is able to detect it. However, an attacker can gradually increase the magnitude of the attack to avoid detection, and still cause damage to the system.","PeriodicalId":377150,"journal":{"name":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2019.8909739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Intelligently designed false data injection (FDI) attacks have been shown to be able to bypass the χ2-test based bad data detector (BDD), resulting in physical consequences (such as line overloads) in the power system. In this paper, using synthetic PMU measurements and intelligently designed FDI attacks, it is shown that if an attack is suddenly injected into the system, a predictive filter with sufficient accuracy is able to detect it. However, an attacker can gradually increase the magnitude of the attack to avoid detection, and still cause damage to the system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测过滤器能否检测到针对pmu的逐渐增加的假数据注入攻击?
智能设计的虚假数据注入(FDI)攻击已被证明能够绕过基于χ2测试的不良数据检测器(BDD),导致电力系统中的物理后果(如线路过载)。本文利用综合PMU测量和智能设计的FDI攻击,证明了当攻击突然注入系统时,具有足够精度的预测滤波器能够检测到它。但是,攻击者可以逐渐增加攻击幅度以避免被检测到,并且仍然会对系统造成损害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online Demand Response of Voltage-Dependent Loads for Corrective Grid De-Congestion MEED: An Unsupervised Multi-Environment Event Detector for Non-Intrusive Load Monitoring Traction substation power signal characteristics and transient power quality evaluation method Reliable Streaming and Synchronization of Smart Meter Data over Intermittent Data Connections Synthetic Power Line Communications Channel Generation with Autoencoders and GANs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1