Fiber dye classification by spectral imaging

G. Rahaman, J. Parkkinen, M. Hauta-Kasari, Syed Hossain Amirshahi
{"title":"Fiber dye classification by spectral imaging","authors":"G. Rahaman, J. Parkkinen, M. Hauta-Kasari, Syed Hossain Amirshahi","doi":"10.1109/ICIVPR.2017.7890872","DOIUrl":null,"url":null,"abstract":"Identification of colorants of artworks is of paramount importance in the context of museums and art galleries. We present a technique to discriminate the fiber dyes into natural or synthetic class using principal component analysis (PCA). Spectral imaging is used to measure the reflectance spectra of a variety of dyed wools in visible to near infrared (Vis/NIR): 400–1000 nm and short wave infrared (SWIR): 1000–2500 nm wavelength range. The full spectral range is segmented into nine partitions, and eigen vectors are extracted for each segment of training data. The same eigen vectors are used to compute the principal components (PCs) of training and test data. To classify test data, we successively increase the number of PCs and apply k-NN classifier to associate class label to the most similar training data. Results show over 93% overall accuracy with high precision in the range (1500–2500) nm using six PCs. By this technique natural Madder dyes can be classified from synthetic dyes with more than 98% accuracy.","PeriodicalId":126745,"journal":{"name":"2017 IEEE International Conference on Imaging, Vision & Pattern Recognition (icIVPR)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Imaging, Vision & Pattern Recognition (icIVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVPR.2017.7890872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Identification of colorants of artworks is of paramount importance in the context of museums and art galleries. We present a technique to discriminate the fiber dyes into natural or synthetic class using principal component analysis (PCA). Spectral imaging is used to measure the reflectance spectra of a variety of dyed wools in visible to near infrared (Vis/NIR): 400–1000 nm and short wave infrared (SWIR): 1000–2500 nm wavelength range. The full spectral range is segmented into nine partitions, and eigen vectors are extracted for each segment of training data. The same eigen vectors are used to compute the principal components (PCs) of training and test data. To classify test data, we successively increase the number of PCs and apply k-NN classifier to associate class label to the most similar training data. Results show over 93% overall accuracy with high precision in the range (1500–2500) nm using six PCs. By this technique natural Madder dyes can be classified from synthetic dyes with more than 98% accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光谱成像法分类纤维染料
在博物馆和艺术画廊的背景下,艺术品的颜料识别是至关重要的。提出了一种利用主成分分析(PCA)区分天然和合成纤维染料的方法。光谱成像用于测量各种染色羊毛在可见光至近红外(Vis/NIR) 400 - 1000nm和短波红外(SWIR) 1000 - 2500nm波长范围内的反射光谱。将全光谱范围分割为9个分区,并对每一段训练数据提取特征向量。使用相同的特征向量来计算训练和测试数据的主成分(PCs)。为了对测试数据进行分类,我们依次增加pc的数量,并应用k-NN分类器将类标签与最相似的训练数据关联起来。结果表明,使用6台pc,在1500-2500 nm范围内的总体准确度超过93%。该技术可将天然茜草染料与合成染料区分开来,准确率达98%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart material interfaces: Playful and artistic applications Detection of Interstitial Lung Disease using correlation and regression methods on texture measure Single cell mass measurement from deformation of nanofork Handwritten Arabic numeral recognition using deep learning neural networks Chord Angle Deviation using Tangent (CADT), an efficient and robust contour-based corner detector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1