Outlier Detection using Hierarchical Spatial Verification for Visual Place Recognition

M. Yuan, Zhengguo Li, K. Wan, W. Yau
{"title":"Outlier Detection using Hierarchical Spatial Verification for Visual Place Recognition","authors":"M. Yuan, Zhengguo Li, K. Wan, W. Yau","doi":"10.1109/ICARCV.2018.8581070","DOIUrl":null,"url":null,"abstract":"Spatial verification is a key step to remove outliers for accurate feature matching in visual place recognition. In this paper, we propose a novel method for outlier detection using a hierarchical spatial verification scheme. Given a set of putative correspondences between a pair of images, we convert the matching problem into a 4D transformation space and identify promising similarity transformations using Hough voting. In the hierarchical scheme, we first use a hypothesize-and-verify technique to identify groups of correspondences according to each similarity transformation. Second, the group with the largest number of correspondences serves as a standard to subsequently remove outliers in other groups by explicit geometric consistency checking. We have compared the proposed method with the state-of-the-art solutions on five popular public datasets to show that our method has better performance in place recognition and loop closure detection.","PeriodicalId":395380,"journal":{"name":"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)","volume":"8 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2018.8581070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Spatial verification is a key step to remove outliers for accurate feature matching in visual place recognition. In this paper, we propose a novel method for outlier detection using a hierarchical spatial verification scheme. Given a set of putative correspondences between a pair of images, we convert the matching problem into a 4D transformation space and identify promising similarity transformations using Hough voting. In the hierarchical scheme, we first use a hypothesize-and-verify technique to identify groups of correspondences according to each similarity transformation. Second, the group with the largest number of correspondences serves as a standard to subsequently remove outliers in other groups by explicit geometric consistency checking. We have compared the proposed method with the state-of-the-art solutions on five popular public datasets to show that our method has better performance in place recognition and loop closure detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于层次空间验证的视觉位置识别离群点检测
空间验证是视觉位置识别中去除异常点、实现准确特征匹配的关键步骤。在本文中,我们提出了一种新的使用层次空间验证方案的异常点检测方法。给定一对图像之间的一组假定对应关系,我们将匹配问题转换为四维变换空间,并使用霍夫投票识别有希望的相似变换。在分层方案中,我们首先使用假设和验证技术根据每个相似变换来识别对应组。其次,具有最大数量对应的组作为标准,随后通过显式几何一致性检查去除其他组中的异常值。我们将所提出的方法与五个流行的公共数据集上的最新解决方案进行了比较,表明我们的方法在位置识别和闭环检测方面具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Virtual Commissioning of Machine Vision Applications in Aero Engine Manufacturing Barrier Lyapunov Function Based Output-constrained Control of Nonlinear Euler-Lagrange Systems Visuo-Tactile Recognition of Daily-Life Objects Never Seen or Touched Before Synthesis of Point Memory-Based Adaptive Gain Robust Controllers with Guaranteed $\mathcal{L}_{2}$ Gain Performance for a Class of Uncertain Time-Delay Systems Formation Control of Multiple Mobile Robots with Large Obstacle Avoidance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1