Countering the false positive projection effect in nonlinear asymmetric classification

Serhiy Kosinov, S. Marchand-Maillet, T. Pun
{"title":"Countering the false positive projection effect in nonlinear asymmetric classification","authors":"Serhiy Kosinov, S. Marchand-Maillet, T. Pun","doi":"10.1109/ISSPIT.2005.1577180","DOIUrl":null,"url":null,"abstract":"This work concerns the problem of asymmetric classification and provides the following contributions. First, it introduces the method of KDDA - a kernelized extension of the distance-based discriminant analysis technique that treats data asymmetrically and naturally accommodates indefinite kernels. Second, it demonstrates that KDDA and other asymmetric nonlinear projective approaches, such as BiasMap and KFD are often prone to an adverse condition referred to as the false positive projection effect. Empirical evaluation on both synthetic and real-world data sets is carried out to assess the degree of performance degradation due to false positive projection effect, determine the viability of some schemes for its elimination, and compare the introduced KDDA method with state-of-the-art alternatives, achieving encouraging results","PeriodicalId":421826,"journal":{"name":"Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology, 2005.","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2005.1577180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work concerns the problem of asymmetric classification and provides the following contributions. First, it introduces the method of KDDA - a kernelized extension of the distance-based discriminant analysis technique that treats data asymmetrically and naturally accommodates indefinite kernels. Second, it demonstrates that KDDA and other asymmetric nonlinear projective approaches, such as BiasMap and KFD are often prone to an adverse condition referred to as the false positive projection effect. Empirical evaluation on both synthetic and real-world data sets is carried out to assess the degree of performance degradation due to false positive projection effect, determine the viability of some schemes for its elimination, and compare the introduced KDDA method with state-of-the-art alternatives, achieving encouraging results
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对抗非线性非对称分类中的假阳性投影效应
这项工作涉及不对称分类问题,并提供以下贡献。首先,它介绍了KDDA方法——一种基于距离的判别分析技术的核化扩展,它对数据进行不对称处理,自然地适应不确定的核。其次,它表明KDDA和其他非对称非线性投影方法,如BiasMap和KFD,往往容易出现一种被称为假阳性投影效应的不利条件。对合成数据集和真实数据集进行了经验评估,以评估由于假阳性投影效应而导致的性能下降程度,确定某些方案的消除可行性,并将引入的KDDA方法与最先进的替代方案进行比较,取得了令人鼓舞的结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A butterfly structure for rate k/n convolutional codes Mode decision optimization issues in H.264 video coding Implementation procedure of wireless signal map matching for location-based services Speech synthesis from surface electromyogram signal A text summarizer based on meta-search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1