Chen Wang, Jinghan Sun, M. Snir, K. Mohror, Elsa Gonsiorowski
{"title":"Recorder 2.0: Efficient Parallel I/O Tracing and Analysis","authors":"Chen Wang, Jinghan Sun, M. Snir, K. Mohror, Elsa Gonsiorowski","doi":"10.1109/IPDPSW50202.2020.00176","DOIUrl":null,"url":null,"abstract":"Recorder is a multi-level I/O tracing tool that captures HDF5, MPI-I/O, and POSIX I/O calls. In this paper, we present a new version of Recorder that adds support for most metadata POSIX calls such as stat, link, and rename. We also introduce a compressed tracing format to reduce trace file size and run time overhead incurred from collecting the trace data. Moreover, we add a set of post-mortem and visualization routines to our new version of Recorder that manage the compressed trace data for users. Our experiments with four HPC applications show a file size reduction of over 2× and reduced post-processing time by 20% when using our new compressed trace file format.","PeriodicalId":398819,"journal":{"name":"2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW50202.2020.00176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
Recorder is a multi-level I/O tracing tool that captures HDF5, MPI-I/O, and POSIX I/O calls. In this paper, we present a new version of Recorder that adds support for most metadata POSIX calls such as stat, link, and rename. We also introduce a compressed tracing format to reduce trace file size and run time overhead incurred from collecting the trace data. Moreover, we add a set of post-mortem and visualization routines to our new version of Recorder that manage the compressed trace data for users. Our experiments with four HPC applications show a file size reduction of over 2× and reduced post-processing time by 20% when using our new compressed trace file format.