Recorder 2.0: Efficient Parallel I/O Tracing and Analysis

Chen Wang, Jinghan Sun, M. Snir, K. Mohror, Elsa Gonsiorowski
{"title":"Recorder 2.0: Efficient Parallel I/O Tracing and Analysis","authors":"Chen Wang, Jinghan Sun, M. Snir, K. Mohror, Elsa Gonsiorowski","doi":"10.1109/IPDPSW50202.2020.00176","DOIUrl":null,"url":null,"abstract":"Recorder is a multi-level I/O tracing tool that captures HDF5, MPI-I/O, and POSIX I/O calls. In this paper, we present a new version of Recorder that adds support for most metadata POSIX calls such as stat, link, and rename. We also introduce a compressed tracing format to reduce trace file size and run time overhead incurred from collecting the trace data. Moreover, we add a set of post-mortem and visualization routines to our new version of Recorder that manage the compressed trace data for users. Our experiments with four HPC applications show a file size reduction of over 2× and reduced post-processing time by 20% when using our new compressed trace file format.","PeriodicalId":398819,"journal":{"name":"2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW50202.2020.00176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Recorder is a multi-level I/O tracing tool that captures HDF5, MPI-I/O, and POSIX I/O calls. In this paper, we present a new version of Recorder that adds support for most metadata POSIX calls such as stat, link, and rename. We also introduce a compressed tracing format to reduce trace file size and run time overhead incurred from collecting the trace data. Moreover, we add a set of post-mortem and visualization routines to our new version of Recorder that manage the compressed trace data for users. Our experiments with four HPC applications show a file size reduction of over 2× and reduced post-processing time by 20% when using our new compressed trace file format.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recorder 2.0:高效的并行I/O跟踪和分析
Recorder是一个多级I/O跟踪工具,可捕获HDF5, MPI-I/O和POSIX I/O调用。在本文中,我们提出了一个新版本的Recorder,它增加了对大多数元数据POSIX调用的支持,如stat、link和rename。我们还引入了一种压缩的跟踪格式,以减少跟踪文件大小和收集跟踪数据所产生的运行时开销。此外,我们在新版本的Recorder中添加了一组事后分析和可视化例程,用于为用户管理压缩的跟踪数据。我们对四个HPC应用程序的实验表明,当使用我们新的压缩跟踪文件格式时,文件大小减少了2倍以上,后处理时间减少了20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PDCunplugged: A Free Repository of Unplugged Parallel Distributed Computing Activities Competitive Evolution of a UAV Swarm for Improving Intruder Detection Rates Workshop 7: HPBDC High-Performance Big Data and Cloud Computing Teaching Cloud Computing: Motivations, Challenges and Tools Exploring Chapel Productivity Using Some Graph Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1