Fuzzy Min-Max Neural Networks for Business Intelligence

Seba Susan, Satish Kumar Khowal, Ashwini Kumar, Arun Kumar, Anurag Singh Yadav
{"title":"Fuzzy Min-Max Neural Networks for Business Intelligence","authors":"Seba Susan, Satish Kumar Khowal, Ashwini Kumar, Arun Kumar, Anurag Singh Yadav","doi":"10.1109/ISCBI.2013.31","DOIUrl":null,"url":null,"abstract":"In this paper the supervised application of fuzzy min-max neural networks to business intelligence is discussed. It utilizes fuzzy sets as pattern classes and builds a fuzzy hyper box for each class in a single pass of the test data. The fuzzy set hyper box is defined by its min point and max point membership functions which are determined by an expansion-contraction process. The best hyper box conforming to the highest memberships is used for the classification of the test data to a particular class.","PeriodicalId":311471,"journal":{"name":"2013 International Symposium on Computational and Business Intelligence","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Symposium on Computational and Business Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCBI.2013.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper the supervised application of fuzzy min-max neural networks to business intelligence is discussed. It utilizes fuzzy sets as pattern classes and builds a fuzzy hyper box for each class in a single pass of the test data. The fuzzy set hyper box is defined by its min point and max point membership functions which are determined by an expansion-contraction process. The best hyper box conforming to the highest memberships is used for the classification of the test data to a particular class.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
商业智能中的模糊最小-最大神经网络
本文讨论了模糊最小-最大神经网络在商业智能中的监督应用。它利用模糊集作为模式类,并在一次测试数据中为每个类构建一个模糊超框。模糊集超盒由其最小点和最大点隶属函数定义,这两个隶属函数由膨胀-收缩过程确定。符合最高隶属度的最佳超盒用于将测试数据分类到特定的类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data Blocks' Signature in Cloud Computing Opinion Mining Using Frequent Pattern Growth Method from Unstructured Text Hybrid Algorithm for Line Planning Problem Clustering in User Information Retrieval on Web Implementation of File Transfer Using Message Transmission Optimization Mechanism (MTOM)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1