{"title":"Bayesian inference for stochastic epidemics in closed populations","authors":"G. Streftaris, G. Gibson","doi":"10.1191/1471082X04st065oa","DOIUrl":null,"url":null,"abstract":"We consider continuous-time stochastic compartmental models that can be applied in veterinary epidemiology to model the within-herd dynamics of infectious diseases. We focus on an extension of Markovian epidemic models, allowing the infectious period of an individual to follow a Weibull distribution, resulting in a more flexible model for many diseases. Following a Bayesian approach we show how approximation methods can be applied to design efficient MCMC algorithms with favourable mixing properties for fitting non-Markovian models to partial observations of epidemic processes. The methodology is used to analyse real data concerning a smallpox outbreak in a human population, and a simulation study is conducted to assess the effects of the frequency and accuracy of diagnostic tests on the information yielded on the epidemic process.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082X04st065oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70
Abstract
We consider continuous-time stochastic compartmental models that can be applied in veterinary epidemiology to model the within-herd dynamics of infectious diseases. We focus on an extension of Markovian epidemic models, allowing the infectious period of an individual to follow a Weibull distribution, resulting in a more flexible model for many diseases. Following a Bayesian approach we show how approximation methods can be applied to design efficient MCMC algorithms with favourable mixing properties for fitting non-Markovian models to partial observations of epidemic processes. The methodology is used to analyse real data concerning a smallpox outbreak in a human population, and a simulation study is conducted to assess the effects of the frequency and accuracy of diagnostic tests on the information yielded on the epidemic process.