Controlling Posture of Jumping Articulated Robot for Stable Landing

Hotae Lee
{"title":"Controlling Posture of Jumping Articulated Robot for Stable Landing","authors":"Hotae Lee","doi":"10.1109/URAI.2018.8441882","DOIUrl":null,"url":null,"abstract":"We propose a new control framework of a jumping articulated robot for a stable landing. We derive dynamics of a hybrid system which consists of a flight phase and a stance phase by connecting them through an inelastic impact model of Formalsky. We assume a flight phase is a nonholonomic Chaplygin system and a stance phase is a fully-actuated system. Based on this dynamics, we propose new time-varying control with considerations for features of jumping such as joint angle limit, short duration of flight. It can make a robot get the desired angle within a specific range at the moment of landing. In addition, we find an optimal control to return a robot to an upright pose based on gain tuning. Simulations using a 4-link robot are also performed to show this visually. The motion from new control framework performs in the limit of joints other and requires less torque than conventional controls without a given trajectory.","PeriodicalId":347727,"journal":{"name":"2018 15th International Conference on Ubiquitous Robots (UR)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URAI.2018.8441882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a new control framework of a jumping articulated robot for a stable landing. We derive dynamics of a hybrid system which consists of a flight phase and a stance phase by connecting them through an inelastic impact model of Formalsky. We assume a flight phase is a nonholonomic Chaplygin system and a stance phase is a fully-actuated system. Based on this dynamics, we propose new time-varying control with considerations for features of jumping such as joint angle limit, short duration of flight. It can make a robot get the desired angle within a specific range at the moment of landing. In addition, we find an optimal control to return a robot to an upright pose based on gain tuning. Simulations using a 4-link robot are also performed to show this visually. The motion from new control framework performs in the limit of joints other and requires less torque than conventional controls without a given trajectory.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跳跃式关节机器人稳定着陆的姿态控制
提出了一种新的跳跃式关节机器人稳定着陆控制框架。通过Formalsky的非弹性碰撞模型,推导了由飞行阶段和站立阶段组成的混合系统的动力学方程。我们假设飞行阶段是一个非完整的Chaplygin系统,而站立阶段是一个全驱动系统。在此基础上,提出了一种考虑关节角度限制、飞行时间短等跳跃特性的时变控制方法。它可以使机器人在着陆时在特定的范围内获得所需的角度。此外,我们还找到了一种基于增益调谐的最优控制方法,使机器人恢复到直立姿态。利用四连杆机器人进行了仿真,直观地展示了这一点。新控制框架的运动在其他关节的限制下进行,并且比没有给定轨迹的传统控制需要更小的扭矩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pneumatic Sleeve-Assisted Stable sEMG Measurement for Microneedle Array Electrode The creation of SanTO: a robot with “divine” features Design, Implementation, and Control of the Underwater Legged Robot AquaShoko for Low-Signature Underwater Exploration Shared Teleoperation for Nuclear Plant Robotics Using Interactive Virtual Guidance Generation and Shared Autonomy Approaches IPMC Embedded in a Pneumatic Soft Robotic Actuator: Preliminary Experiments in Actuation and SensingBehaviors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1