Database updating through user feedback in fingerprint-based Wi-Fi location systems

Thomas J. Gallagher, Binghao Li, A. Dempster, C. Rizos
{"title":"Database updating through user feedback in fingerprint-based Wi-Fi location systems","authors":"Thomas J. Gallagher, Binghao Li, A. Dempster, C. Rizos","doi":"10.1109/UPINLBS.2010.5654329","DOIUrl":null,"url":null,"abstract":"Wi-Fi fingerprinting is a technique which can provide location in GPS-denied environments, relying exclusively on Wi-Fi signals. It first requires the construction of a database of “fingerprints”, i.e. signal strengths from different access points (APs) at different reference points in the desired coverage area. The location of the device is then obtained by measuring the signal strengths at its location, and comparing it with the different reference fingerprints in the database. The main disadvantage of this technique is the labour required to build and maintain the fingerprints database, which has to be rebuilt every time a significant change in the wireless environment occurs, such as installation or removal of new APs, changes in the layout of a building, etc. This paper investigates a new method to utilise user feedback as a way of monitoring changes in the wireless environment. It is based on a system of “points” given to each AP in the database. When an AP is switched off, the number of points associated with that AP will gradually reduce as the users give feedback, until it is eventually deleted from the database. If a new AP is installed, the system will detect it and update the database with new fingerprints. Our proposed system has two main advantages. First it can be used as a tool to monitor the wireless environment in a given place, detecting faulty APs or unauthorised installation of new ones. Second, it regulates the size of the database, unlike other systems where feedback is only used to insert new fingerprints in the database.","PeriodicalId":373653,"journal":{"name":"2010 Ubiquitous Positioning Indoor Navigation and Location Based Service","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ubiquitous Positioning Indoor Navigation and Location Based Service","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPINLBS.2010.5654329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

Wi-Fi fingerprinting is a technique which can provide location in GPS-denied environments, relying exclusively on Wi-Fi signals. It first requires the construction of a database of “fingerprints”, i.e. signal strengths from different access points (APs) at different reference points in the desired coverage area. The location of the device is then obtained by measuring the signal strengths at its location, and comparing it with the different reference fingerprints in the database. The main disadvantage of this technique is the labour required to build and maintain the fingerprints database, which has to be rebuilt every time a significant change in the wireless environment occurs, such as installation or removal of new APs, changes in the layout of a building, etc. This paper investigates a new method to utilise user feedback as a way of monitoring changes in the wireless environment. It is based on a system of “points” given to each AP in the database. When an AP is switched off, the number of points associated with that AP will gradually reduce as the users give feedback, until it is eventually deleted from the database. If a new AP is installed, the system will detect it and update the database with new fingerprints. Our proposed system has two main advantages. First it can be used as a tool to monitor the wireless environment in a given place, detecting faulty APs or unauthorised installation of new ones. Second, it regulates the size of the database, unlike other systems where feedback is only used to insert new fingerprints in the database.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wi-Fi指纹识别技术是一种在没有全球定位系统的环境中,完全依靠Wi-Fi信号提供位置的技术。首先需要建立“指纹”数据库,即期望覆盖区域内不同参考点的不同接入点(ap)的信号强度。然后通过测量设备所在位置的信号强度,并将其与数据库中的不同参考指纹进行比较,从而获得设备的位置。这种技术的主要缺点是需要人工来建立和维护指纹数据库,每次无线环境发生重大变化时都必须重建指纹数据库,例如安装或拆除新的ap,建筑物布局的变化等。本文研究了一种利用用户反馈来监测无线环境变化的新方法。它基于数据库中每个AP的“分数”系统。当一个AP被关闭时,随着用户的反馈,与该AP相关联的点数将逐渐减少,直到最终从数据库中删除。如果安装了新的AP,系统将检测到它并使用新的指纹更新数据库。我们提出的系统有两个主要优点。首先,它可以作为一种工具来监视给定地点的无线环境,检测有故障的接入点或未经授权安装的新接入点。其次,它调节了数据库的大小,不像其他系统,反馈只用于在数据库中插入新的指纹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The FMCW technology-based indoor localization system Magnetic field navigation in an indoor environment Indoor positioning within a single camera and 3D maps UbiSpot - A user trained always best positioned engine for mobile phones Making indoor maps with portable accelerometer and magnetometer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1