Performance Prediction of Jupyter Notebook in JupyterHub using Machine Learning

Pariwat Prathanrat, Chantri Polprasert
{"title":"Performance Prediction of Jupyter Notebook in JupyterHub using Machine Learning","authors":"Pariwat Prathanrat, Chantri Polprasert","doi":"10.1109/ICIIBMS.2018.8550030","DOIUrl":null,"url":null,"abstract":"In this paper, we employ machine learning to predict the performance of Jupyter notebook on JupyterHub. We show that the notebook's CPU profile, the notebook's RAM profile, number of users and average delay between cells are crucial features that impact the performance of the machine learning models to accurately predict the performance of Jupyter notebook in term of the response time. We characterize the performance of our model to predict the notebook's response time in terms of the mean absolute error (MAE) and mean absolute percentage error (MAPE). Results show that the random forest model yields strongest performance to predict the performance of Jupyter notebook with MAPE equal to 9.849% and MAE equal to 13.768 seconds. with r-square equal to 0.93.","PeriodicalId":430326,"journal":{"name":"2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","volume":"70 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIBMS.2018.8550030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, we employ machine learning to predict the performance of Jupyter notebook on JupyterHub. We show that the notebook's CPU profile, the notebook's RAM profile, number of users and average delay between cells are crucial features that impact the performance of the machine learning models to accurately predict the performance of Jupyter notebook in term of the response time. We characterize the performance of our model to predict the notebook's response time in terms of the mean absolute error (MAE) and mean absolute percentage error (MAPE). Results show that the random forest model yields strongest performance to predict the performance of Jupyter notebook with MAPE equal to 9.849% and MAE equal to 13.768 seconds. with r-square equal to 0.93.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的Jupyter Notebook在JupyterHub中的性能预测
在本文中,我们使用机器学习来预测Jupyter笔记本在JupyterHub上的性能。我们表明,笔记本电脑的CPU配置文件,笔记本电脑的RAM配置文件,用户数量和单元之间的平均延迟是影响机器学习模型性能的关键特征,以准确预测Jupyter笔记本电脑在响应时间方面的性能。我们根据平均绝对误差(MAE)和平均绝对百分比误差(MAPE)来描述模型的性能,以预测笔记本电脑的响应时间。结果表明,随机森林模型在预测Jupyter笔记本性能时,MAPE = 9.849%, MAE = 13.768秒,效果最好。r方等于0.93。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neuronal Dynamic Framework of Cerebral Cortical Networks for Spontaneous Behaviors User Experience Evaluation on the Cryptocurrency Website by Trust Aspect Energy and Cost Efficient Navigation Technique for the Visually Impaired Transforming Auto-Encoder and Decoder Network for Pediatric Bone Image Segmentation using a State-of-the-art Semantic Segmentation network on Bone Radiographs Observer design of high throughput screening system based on dioid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1