Secret Key-Based Image Steganography in Spatial Domain

Rajashree Gajabe, Syed Taqi Ali
{"title":"Secret Key-Based Image Steganography in Spatial Domain","authors":"Rajashree Gajabe, Syed Taqi Ali","doi":"10.1142/S0219467822500140","DOIUrl":null,"url":null,"abstract":"Day by day, the requirement for secure communication among users is rising in a digital world, to protect the message from the undesirable users. Steganography is a methodology that satisfies the user’s necessity of secure communication by inserting a message into different formats. This paper proposes a secret key-based image steganography to secure the message by concealing the grayscale image inside a cover image. The proposed technique shares the 20 characters long secret key between two clients where the initial eight characters of a secret key are utilized for bit permutation of characters and pixels while the last 12 characters of secret key decide the encryption keys and position of pixels of a grayscale image into the cover. The grayscale image undergoes operation such as encryption and chaotic baker followed by its hiding in a cover to form a stego image. The execution of the proposed strategy is performed on Matlab 2018. It shows that the proposed approach manages to store the maximum message of size 16[Formula: see text]KB into the cover of size [Formula: see text]. The image quality of stego images has been evaluated using PSNR, MSE. For a full payload of 16[Formula: see text]KB, PSNR is around 51[Formula: see text]dB to 53[Formula: see text]dB which is greater than satisfactory PSNR.","PeriodicalId":177479,"journal":{"name":"Int. J. Image Graph.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Image Graph.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0219467822500140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Day by day, the requirement for secure communication among users is rising in a digital world, to protect the message from the undesirable users. Steganography is a methodology that satisfies the user’s necessity of secure communication by inserting a message into different formats. This paper proposes a secret key-based image steganography to secure the message by concealing the grayscale image inside a cover image. The proposed technique shares the 20 characters long secret key between two clients where the initial eight characters of a secret key are utilized for bit permutation of characters and pixels while the last 12 characters of secret key decide the encryption keys and position of pixels of a grayscale image into the cover. The grayscale image undergoes operation such as encryption and chaotic baker followed by its hiding in a cover to form a stego image. The execution of the proposed strategy is performed on Matlab 2018. It shows that the proposed approach manages to store the maximum message of size 16[Formula: see text]KB into the cover of size [Formula: see text]. The image quality of stego images has been evaluated using PSNR, MSE. For a full payload of 16[Formula: see text]KB, PSNR is around 51[Formula: see text]dB to 53[Formula: see text]dB which is greater than satisfactory PSNR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于密钥的空间域图像隐写
在数字世界中,用户之间的安全通信要求日益提高,以保护信息不受不良用户的影响。隐写术是一种通过将消息插入不同格式来满足用户安全通信需求的方法。本文提出了一种基于密钥的图像隐写技术,通过将灰度图像隐藏在封面图像中来保证信息的安全。该技术在两个客户端之间共享20个字符长的密钥,其中密钥的前8个字符用于字符和像素的位置换,密钥的后12个字符决定灰度图像的加密密钥和像素进入封面的位置。灰度图像经过加密、混沌烘焙等操作,然后隐藏在掩体中,形成隐写图像。在Matlab 2018上执行了所提出的策略。结果表明,所提出的方法能够将大小为16 KB的最大消息存储到大小为[公式:见文本]的封面中。用PSNR、MSE对隐写图像的图像质量进行了评价。对于16[公式:见文本]KB的完整有效载荷,PSNR约为51[公式:见文本]dB至53[公式:见文本]dB,这比令人满意的PSNR要大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid Pattern Extraction with Deep Learning-Based Heart Disease Diagnosis Using Echocardiogram Images Certainty-Based Deep Fused Neural Network Using Transfer Learning and Adaptive Movement Estimation for the Diagnosis of Cardiomegaly Deep Ensemble Model for Spam Classification in Twitter via Sentiment Extraction: Bio-Inspiration-Based Classification Model A Systematic Survey on Photorealistic Computer Graphic and Photographic Image Discrimination A Review on Deep Learning Classifier for Hyperspectral Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1