Automatic Classification of Teeth in Bitewing Dental Images Using OLPP

Nourdin Al-sherif, G. Guo, H. Ammar
{"title":"Automatic Classification of Teeth in Bitewing Dental Images Using OLPP","authors":"Nourdin Al-sherif, G. Guo, H. Ammar","doi":"10.1109/ISM.2012.26","DOIUrl":null,"url":null,"abstract":"Teeth classification is an important component in building an Automated Dental Identification System (ADIS) as part of creating a data structure that guides tooth-to-tooth matching. This aids in avoiding illogical comparisons that both inefficiently consume the limited computational resources and mislead decision-making. We tackle this problem by using low computational-cost, appearance-based Orthogonal Locality Preserving Projection (OLPP) algorithm to assign an initial class, i.e. molar or premolar to the teeth in bitewing dental images. After this initial classification, we use a string matching technique, based on teeth neighborhood rules, to validate initial teeth-classes and thus assign each tooth a number corresponding to its location in the dental chart. On a large dataset of bitewing films that contain 622 teeth, the proposed approach achieves classification accuracy of 89% and teeth class validation enhances the overall teeth classification accuracy to 92%.","PeriodicalId":282528,"journal":{"name":"2012 IEEE International Symposium on Multimedia","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2012.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Teeth classification is an important component in building an Automated Dental Identification System (ADIS) as part of creating a data structure that guides tooth-to-tooth matching. This aids in avoiding illogical comparisons that both inefficiently consume the limited computational resources and mislead decision-making. We tackle this problem by using low computational-cost, appearance-based Orthogonal Locality Preserving Projection (OLPP) algorithm to assign an initial class, i.e. molar or premolar to the teeth in bitewing dental images. After this initial classification, we use a string matching technique, based on teeth neighborhood rules, to validate initial teeth-classes and thus assign each tooth a number corresponding to its location in the dental chart. On a large dataset of bitewing films that contain 622 teeth, the proposed approach achieves classification accuracy of 89% and teeth class validation enhances the overall teeth classification accuracy to 92%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于OLPP的咬翼牙齿图像自动分类
牙齿分类是建立自动牙齿识别系统(ADIS)的重要组成部分,是创建指导牙齿对牙齿匹配的数据结构的一部分。这有助于避免不合逻辑的比较,这种比较既会低效地消耗有限的计算资源,又会误导决策。我们通过使用低计算成本、基于外观的正交局域保持投影(OLPP)算法来为咬翼牙齿图像中的牙齿分配初始类别,即臼齿或前臼齿。在初始分类之后,我们使用基于牙齿邻域规则的字符串匹配技术来验证初始牙齿类别,从而为每颗牙齿分配与其在牙齿图表中的位置相对应的数字。在包含622颗牙齿的咬翼膜大数据集上,该方法的分类准确率达到89%,牙齿分类验证将整体牙齿分类准确率提高到92%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detailed Comparative Analysis of VP8 and H.264 Enhancing the MST-CSS Representation Using Robust Geometric Features, for Efficient Content Based Video Retrieval (CBVR) A Standardized Metadata Set for Annotation of Virtual and Remote Laboratories Using Wavelets and Gaussian Mixture Models for Audio Classification A Data Aware Admission Control Technique for Social Live Streams (SOLISs)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1