Dragonfly Algorithm for Robust Tuning of Power System Stabilizers in Multimachine Networks

Mohammad Saiful Islam, Md. Rashidul Islam, M. Shafiullah, Md. Samiul Azam
{"title":"Dragonfly Algorithm for Robust Tuning of Power System Stabilizers in Multimachine Networks","authors":"Mohammad Saiful Islam, Md. Rashidul Islam, M. Shafiullah, Md. Samiul Azam","doi":"10.1109/icaeee54957.2022.9836405","DOIUrl":null,"url":null,"abstract":"Low-frequency oscillation (LFO) is a significant problem for Multi-machine power system (MPS) networks. It makes the power system networks unstable. In this article, a new Power system stabilizer (PSS) design method is demonstrated using the Dragonfly algorithm (DA). To enhance system damping, a damping ratio-based objective function is used, and a typical lead-lag type PSS (CPSS) structure is considered. In this case, the algorithm's ability to provide the best PSS design regardless of the starting guess demonstrates its robustness. This method is tested on two separate multi-machine networks exposed to a 3-Φ fault, and compared with two well-known optimization algorithms called PSO and BSA. The optimization results show that the DA technique provides better system damping than PSO and BSA.","PeriodicalId":383872,"journal":{"name":"2022 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icaeee54957.2022.9836405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Low-frequency oscillation (LFO) is a significant problem for Multi-machine power system (MPS) networks. It makes the power system networks unstable. In this article, a new Power system stabilizer (PSS) design method is demonstrated using the Dragonfly algorithm (DA). To enhance system damping, a damping ratio-based objective function is used, and a typical lead-lag type PSS (CPSS) structure is considered. In this case, the algorithm's ability to provide the best PSS design regardless of the starting guess demonstrates its robustness. This method is tested on two separate multi-machine networks exposed to a 3-Φ fault, and compared with two well-known optimization algorithms called PSO and BSA. The optimization results show that the DA technique provides better system damping than PSO and BSA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多机网络中电力系统稳定器鲁棒整定的蜻蜓算法
低频振荡(LFO)是多机电力系统(MPS)网络的一个重要问题。它使电力系统网络不稳定。提出了一种基于蜻蜓算法的电力系统稳定器(PSS)设计方法。为了增强系统阻尼,采用了基于阻尼比的目标函数,并考虑了典型的超前滞后型PSS (CPSS)结构。在这种情况下,无论起始猜测如何,该算法都能提供最佳的PSS设计,这证明了它的鲁棒性。该方法在两个独立的多机网络上进行了3-Φ故障测试,并与两种著名的优化算法PSO和BSA进行了比较。优化结果表明,数据分析技术比粒子群算法和BSA算法具有更好的系统阻尼性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of a Multi-band Sierpinski Carpet Fractal Antenna With Modified Ground Plane Effect of Number of Modes of EMD in Respiratory Rate Estimation from PPG Signal An User Interest and Payment-aware Automated Car Parking System for the Bangladeshi People Using Android Application An Improved Load Frequency Control Strategy for Single & Multi-Area Power System Wall Shear Stress Assessment of Aorta with Varying Low-density Lipoprotein Concentration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1