Improved watermark detection for spread-spectrum based watermarking using independent component analysis

Hafiz Malik, A. Khokhar, R. Ansari
{"title":"Improved watermark detection for spread-spectrum based watermarking using independent component analysis","authors":"Hafiz Malik, A. Khokhar, R. Ansari","doi":"10.1145/1102546.1102564","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient blind watermark detection/decoding scheme for spread spectrum (SS) based watermarking, exploiting the fact that in SS-based embedding schemes the embedded watermark and the host signal are mutually independent and obey non-Gaussian distribution. The proposed scheme employs the theory of independent component analysis (ICA) and posed the watermark detection as a blind source separation problem. The proposed ICA-based blind detection/decoding scheme has been simulated using real-world audio clips. The simulation results show that the ICA-based detector can detect and decode watermark with extremely low decoding bit error probability (less than 0.01) against common watermarking attacks and benchmark degradations.","PeriodicalId":124354,"journal":{"name":"ACM Digital Rights Management Workshop","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Digital Rights Management Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1102546.1102564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

This paper presents an efficient blind watermark detection/decoding scheme for spread spectrum (SS) based watermarking, exploiting the fact that in SS-based embedding schemes the embedded watermark and the host signal are mutually independent and obey non-Gaussian distribution. The proposed scheme employs the theory of independent component analysis (ICA) and posed the watermark detection as a blind source separation problem. The proposed ICA-based blind detection/decoding scheme has been simulated using real-world audio clips. The simulation results show that the ICA-based detector can detect and decode watermark with extremely low decoding bit error probability (less than 0.01) against common watermarking attacks and benchmark degradations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于独立分量分析的扩频水印改进水印检测
利用扩频水印嵌入方案中所嵌入的水印与主信号相互独立且服从非高斯分布的特点,提出了一种有效的扩频水印盲检测/解码方案。该方案采用独立分量分析(ICA)理论,将水印检测作为一个盲源分离问题。提出了基于ica的盲检测/解码方案,并使用真实音频片段进行了仿真。仿真结果表明,在常见的水印攻击和基准降低的情况下,基于ica的水印检测器能够以极低的译码误码率(小于0.01)检测和解码水印。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Is DRM working?: how could we tell? Integrated circuit digital rights management techniques using physical level characterization Traitor tracing schemes for protected software implementations A domain specific language for usage management Fast and adaptive tracing strategies for 3-secure fingerprint watermarking codes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1