Evaluating Visual Explanations for Similarity-Based Recommendations: User Perception and Performance

Chun-Hua Tsai, Peter Brusilovsky
{"title":"Evaluating Visual Explanations for Similarity-Based Recommendations: User Perception and Performance","authors":"Chun-Hua Tsai, Peter Brusilovsky","doi":"10.1145/3320435.3320465","DOIUrl":null,"url":null,"abstract":"Recommender system helps users to reduce information overload. In recent years, enhancing explainability in recommender systems has drawn more and more attention in the field of Human-Computer Interaction (HCI). However, it is not clear whether a user-preferred explanation interface can maintain the same level of performance while the users are exploring or comparing the recommendations. In this paper, we introduced a participatory process of designing explanation interfaces with multiple explanatory goals for three similarity-based recommendation models. We investigate the relations of user perception and performance with two user studies. In the first study (N=15), we conducted card-sorting and semi-interview to identify the user preferred interfaces. In the second study (N=18), we carry out a performance-focused evaluation of six explanation interfaces. The result suggests that the user-preferred interface may not guarantee the same level of performance.","PeriodicalId":254537,"journal":{"name":"Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3320435.3320465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Recommender system helps users to reduce information overload. In recent years, enhancing explainability in recommender systems has drawn more and more attention in the field of Human-Computer Interaction (HCI). However, it is not clear whether a user-preferred explanation interface can maintain the same level of performance while the users are exploring or comparing the recommendations. In this paper, we introduced a participatory process of designing explanation interfaces with multiple explanatory goals for three similarity-based recommendation models. We investigate the relations of user perception and performance with two user studies. In the first study (N=15), we conducted card-sorting and semi-interview to identify the user preferred interfaces. In the second study (N=18), we carry out a performance-focused evaluation of six explanation interfaces. The result suggests that the user-preferred interface may not guarantee the same level of performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估基于相似性的推荐的视觉解释:用户感知和性能
推荐系统帮助用户减少信息过载。近年来,增强推荐系统的可解释性越来越受到人机交互领域的关注。然而,当用户探索或比较推荐时,用户首选的解释界面是否能够保持相同的性能水平尚不清楚。在本文中,我们介绍了一个参与式的过程,为三个基于相似性的推荐模型设计具有多个解释目标的解释接口。我们通过两个用户研究来研究用户感知和性能的关系。在第一个研究中(N=15),我们通过卡片分类和半访谈来确定用户偏好的界面。在第二项研究中(N=18),我们对六个解释界面进行了以绩效为中心的评估。结果表明,用户首选的界面可能不能保证相同水平的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Modelling of Attentiveness to Messaging: A Hybrid Approach Engagement, Metrics and Personalisation: the Good, the Bad and the Ugly Towards Social Choice-based Explanations in Group Recommender Systems Personalized Gait-based Authentication Using UWB Wearable Devices Towards Utter Well-Being: Personalization for Guardian Angels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1