Moths: Mobile threads for On-Chip Networks

Matthew Misler, Natalie D. Enright Jerger
{"title":"Moths: Mobile threads for On-Chip Networks","authors":"Matthew Misler, Natalie D. Enright Jerger","doi":"10.1145/1854273.1854342","DOIUrl":null,"url":null,"abstract":"As the number of cores integrated on a single chip continues to increase, communication has the potential to become a severe bottleneck to overall system performance. The presence of thread sharing and the distribution of data across cache banks on the chip can result in long distance communication. Long distance communication incurs substantial latency that impacts performance; furthermore, this communication consumes significant dynamic power when packets are switched over many Network-on-Chip (NoC) links and routers. Thread migration can mitigate problems created by long distance communication. We present Moths, an efficient run-time algorithm that responds automatically to dynamic NoC traffic patterns, providing beneficial thread migration to decrease overall traffic volume and average packet latency. Moths reduces on-chip network latency by up to 28.4% (18.0% on average) and traffic volume by up to 24.9% (20.6% on average) across a variety of commercial and scientific benchmarks.","PeriodicalId":422461,"journal":{"name":"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1854273.1854342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

As the number of cores integrated on a single chip continues to increase, communication has the potential to become a severe bottleneck to overall system performance. The presence of thread sharing and the distribution of data across cache banks on the chip can result in long distance communication. Long distance communication incurs substantial latency that impacts performance; furthermore, this communication consumes significant dynamic power when packets are switched over many Network-on-Chip (NoC) links and routers. Thread migration can mitigate problems created by long distance communication. We present Moths, an efficient run-time algorithm that responds automatically to dynamic NoC traffic patterns, providing beneficial thread migration to decrease overall traffic volume and average packet latency. Moths reduces on-chip network latency by up to 28.4% (18.0% on average) and traffic volume by up to 24.9% (20.6% on average) across a variety of commercial and scientific benchmarks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
飞蛾:片上网络的移动线程
随着集成在单个芯片上的核心数量不断增加,通信有可能成为整体系统性能的严重瓶颈。线程共享的存在和数据在芯片上跨缓存库的分布可以导致长距离通信。长距离通信会产生影响性能的大量延迟;此外,当数据包在许多片上网络(NoC)链路和路由器之间交换时,这种通信消耗大量的动态功率。线程迁移可以减轻远程通信造成的问题。我们提出了Moths,这是一种有效的运行时算法,可以自动响应动态NoC流量模式,提供有益的线程迁移以减少总体流量和平均数据包延迟。在各种商业和科学基准测试中,Moths可将片上网络延迟最多减少28.4%(平均18.0%),流量最多减少24.9%(平均20.6%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing task creation and termination overhead in explicitly parallel programs An intra-tile cache set balancing scheme NUcache: A multicore cache organization based on Next-Use distance Towards a science of parallel programming Discovering and understanding performance bottlenecks in transactional applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1