Automatic Adaptation of Transformations Based on Type Graph with Multiplicity

Quyet-Thang Pham, A. Beugnard
{"title":"Automatic Adaptation of Transformations Based on Type Graph with Multiplicity","authors":"Quyet-Thang Pham, A. Beugnard","doi":"10.1109/SEAA.2012.21","DOIUrl":null,"url":null,"abstract":"Identical domain concepts reified in different metamodelling projects may be named, represented and connected differently. It turns out that a transformation defined for a particular metamodel cannot be directly used for another metamodel. To tackle this problem, we propose a process for automatically adapting legacy transformations. Such a transformation is adapted to the new metamodel that has a slightly different representation in comparison with the original one, while the transformation intention is preserved. To this end, we first introduce a Domain Specific Language (DSL) that allows users to describe the intended correspondences between elements of two metamodels. Then we provide an adaptation engine using these user-defined correspondences to adapt the transformation automatically. We also propose a graph-based typing relation that enables safe adaptations. Our approach has been prototyped with MOMENT2 and can be used with any framework based on the same graph transformation paradigm.","PeriodicalId":298734,"journal":{"name":"2012 38th Euromicro Conference on Software Engineering and Advanced Applications","volume":"194-199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 38th Euromicro Conference on Software Engineering and Advanced Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEAA.2012.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Identical domain concepts reified in different metamodelling projects may be named, represented and connected differently. It turns out that a transformation defined for a particular metamodel cannot be directly used for another metamodel. To tackle this problem, we propose a process for automatically adapting legacy transformations. Such a transformation is adapted to the new metamodel that has a slightly different representation in comparison with the original one, while the transformation intention is preserved. To this end, we first introduce a Domain Specific Language (DSL) that allows users to describe the intended correspondences between elements of two metamodels. Then we provide an adaptation engine using these user-defined correspondences to adapt the transformation automatically. We also propose a graph-based typing relation that enables safe adaptations. Our approach has been prototyped with MOMENT2 and can be used with any framework based on the same graph transformation paradigm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于具有多重性的类型图的自动适应变换
不同元模型项目中重新定义的相同领域概念,其命名、表示和连接方式可能不同。事实证明,为特定元模型定义的转换不能直接用于另一个元模型。为了解决这个问题,我们提出了一种自动调整遗留转换的方法。新元模型的表示方法与原始元模型略有不同,而转换意图却得以保留。为此,我们首先引入了一种领域专用语言(DSL),允许用户描述两个元模型元素之间的预期对应关系。然后,我们提供一个适应引擎,利用这些用户定义的对应关系来自动适应转换。我们还提出了一种基于图的类型关系,可实现安全的适配。我们的方法已在 MOMENT2 中进行了原型验证,并可用于任何基于相同图转换范式的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TIRT: A Traceability Information Retrieval Tool for Software Product Lines Projects Differentiation in the Cloud: Methodology for Integrating Customer Values in Experience Design A Case Study on Measuring Process Quality: Lessons Learned Bee-Inpired Road Traffic Control as an Example of Swarm Intelligence in Cyber-Physical Systems Developers Motivation in Agile Teams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1