Enhancing Piecewise Planar Scene Modeling from a Single Image via Multi-View Regularization

Weijie Xi, Siyu Hu, X. Chen, Zhiwei Xiong
{"title":"Enhancing Piecewise Planar Scene Modeling from a Single Image via Multi-View Regularization","authors":"Weijie Xi, Siyu Hu, X. Chen, Zhiwei Xiong","doi":"10.1145/3355088.3365152","DOIUrl":null,"url":null,"abstract":"Recent studies on planar scene modeling from a single image employ multi-branch neural networks to simultaneously segment pla-nes and recover 3D plane parameters. However, the generalizability and accuracy of these supervised methods heavily rely on the scale of available annotated data. In this paper, we propose multi-view regularization for network training to further enhance single-view reconstruction networks, without demanding extra annotated data. Our multi-view regularization emphasizes multi-view consistency in the training phase, making the feature embedding more robust against view change and lighting variation. Thus, the neural network trained with our regularization can be better generalized to a wide range of views and lightings. Our method achieves state-of-the-art reconstruction performance compared to previous piecewise planar reconstruction methods on the public ScanNet dataset.","PeriodicalId":435930,"journal":{"name":"SIGGRAPH Asia 2019 Technical Briefs","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2019 Technical Briefs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3355088.3365152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recent studies on planar scene modeling from a single image employ multi-branch neural networks to simultaneously segment pla-nes and recover 3D plane parameters. However, the generalizability and accuracy of these supervised methods heavily rely on the scale of available annotated data. In this paper, we propose multi-view regularization for network training to further enhance single-view reconstruction networks, without demanding extra annotated data. Our multi-view regularization emphasizes multi-view consistency in the training phase, making the feature embedding more robust against view change and lighting variation. Thus, the neural network trained with our regularization can be better generalized to a wide range of views and lightings. Our method achieves state-of-the-art reconstruction performance compared to previous piecewise planar reconstruction methods on the public ScanNet dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过多视图正则化增强单幅图像的分段平面场景建模
目前已有的基于单幅图像的平面场景建模研究采用多分支神经网络同时分割平面并恢复三维平面参数。然而,这些监督方法的泛化性和准确性严重依赖于可用注释数据的规模。在本文中,我们提出了用于网络训练的多视图正则化,以进一步增强单视图重构网络,而不需要额外的注释数据。我们的多视图正则化强调训练阶段的多视图一致性,使特征嵌入对视图变化和光照变化更具鲁棒性。因此,用我们的正则化训练的神经网络可以更好地推广到更大范围的视图和照明。与之前在公共ScanNet数据集上的分段平面重建方法相比,我们的方法实现了最先进的重建性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Faster RPNN: Rendering Clouds with Latent Space Light Probes Flexible Ray Traversal with an Extended Programming Model Augmented Reality Guided Respiratory Liver Tumors Punctures: A Preliminary Feasibility Study Beyond the Screen Embedded Concave Micromirror Array-based See-through Light Field Near-eye Display
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1