Learning to Quantize Deep Neural Networks: A Competitive-Collaborative Approach

Md Fahim Faysal Khan, Mohammad Mahdi Kamani, M. Mahdavi, V. Narayanan
{"title":"Learning to Quantize Deep Neural Networks: A Competitive-Collaborative Approach","authors":"Md Fahim Faysal Khan, Mohammad Mahdi Kamani, M. Mahdavi, V. Narayanan","doi":"10.1109/DAC18072.2020.9218576","DOIUrl":null,"url":null,"abstract":"Reducing the model size and computation costs for dedicated AI accelerator designs, neural network quantization methods have attracted momentous attention recently. Unfortunately, merely minimizing quantization loss using constant discretization causes accuracy deterioration. In this paper, we propose an iterative accuracy-driven learning framework of competitive-collaborative quantization (CCQ) to gradually adapt the bit-precision of each individual layer. Orthogonal to prior quantization policies working with full precision for the first and last layers of the network, CCQ offers layer-wise competition for any target quantization policy with holistic layer fine-tuning to recover accuracy, where the state-of-the-art networks can be entirely quantized without any significant accuracy degradation.","PeriodicalId":428807,"journal":{"name":"2020 57th ACM/IEEE Design Automation Conference (DAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 57th ACM/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC18072.2020.9218576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Reducing the model size and computation costs for dedicated AI accelerator designs, neural network quantization methods have attracted momentous attention recently. Unfortunately, merely minimizing quantization loss using constant discretization causes accuracy deterioration. In this paper, we propose an iterative accuracy-driven learning framework of competitive-collaborative quantization (CCQ) to gradually adapt the bit-precision of each individual layer. Orthogonal to prior quantization policies working with full precision for the first and last layers of the network, CCQ offers layer-wise competition for any target quantization policy with holistic layer fine-tuning to recover accuracy, where the state-of-the-art networks can be entirely quantized without any significant accuracy degradation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习量化深度神经网络:一种竞争-协作的方法
神经网络量化方法在减少人工智能专用加速器设计的模型尺寸和计算成本方面受到了广泛关注。不幸的是,仅仅使用常数离散化最小化量化损失会导致精度下降。在本文中,我们提出了一个迭代精度驱动的竞争-协作量化(CCQ)学习框架,以逐步适应每一层的比特精度。CCQ与先前的量化策略正交,在网络的第一层和最后一层以完全精确的方式工作,CCQ为任何目标量化策略提供分层竞争,并进行整体层微调以恢复精度,其中最先进的网络可以完全量化而不会出现任何显著的精度下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FCNNLib: An Efficient and Flexible Convolution Algorithm Library on FPGAs AXI HyperConnect: A Predictable, Hypervisor-level Interconnect for Hardware Accelerators in FPGA SoC Pythia: Intellectual Property Verification in Zero-Knowledge Reuse-trap: Re-purposing Cache Reuse Distance to Defend against Side Channel Leakage Navigator: Dynamic Multi-kernel Scheduling to Improve GPU Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1