Maintaining flow isolation in work-conserving flow aggregation

J. Cobb, Zhe Xu
{"title":"Maintaining flow isolation in work-conserving flow aggregation","authors":"J. Cobb, Zhe Xu","doi":"10.1109/GLOCOM.2005.1577664","DOIUrl":null,"url":null,"abstract":"In order to improve the scalability of scheduling protocols with bounded end-to-end delay, much effort has focused on reducing the amount of per-flow state at routers. One technique to reduce this state is flow aggregation, in which multiple individual flows are aggregated into a single aggregate flow. In addition to reducing per-flow state, flow aggregation has the advantage of a per-hop delay that is inversely proportional to the rate of the aggregate flow, while in the case of no aggregation, the per-hop delay is inversely proportional to the (smaller) rate of the individual flow. Flow aggregation in general is non-work-conserving. Recently, a work-conserving flow aggregation technique has been proposed. However, it has the disadvantage that the end-to-end delay of an individual flow is related to the burstiness of other flows sharing its aggregate flow. Here, we show how work-conserving flow aggregation may be performed without this drawback, that is, the end-to-end delay of an individual flow is independent of the burstiness of other flows.","PeriodicalId":319736,"journal":{"name":"GLOBECOM '05. IEEE Global Telecommunications Conference, 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM '05. IEEE Global Telecommunications Conference, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2005.1577664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In order to improve the scalability of scheduling protocols with bounded end-to-end delay, much effort has focused on reducing the amount of per-flow state at routers. One technique to reduce this state is flow aggregation, in which multiple individual flows are aggregated into a single aggregate flow. In addition to reducing per-flow state, flow aggregation has the advantage of a per-hop delay that is inversely proportional to the rate of the aggregate flow, while in the case of no aggregation, the per-hop delay is inversely proportional to the (smaller) rate of the individual flow. Flow aggregation in general is non-work-conserving. Recently, a work-conserving flow aggregation technique has been proposed. However, it has the disadvantage that the end-to-end delay of an individual flow is related to the burstiness of other flows sharing its aggregate flow. Here, we show how work-conserving flow aggregation may be performed without this drawback, that is, the end-to-end delay of an individual flow is independent of the burstiness of other flows.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在节省工作的流聚合中保持流隔离
为了提高端到端有界延迟调度协议的可扩展性,人们在减少路由器上的每流状态数量方面做了大量的工作。减少这种状态的一种技术是流聚合,其中多个单独的流聚合为单个聚合流。除了减少每流状态外,流聚合的优点是每跳延迟与聚合流速率成反比,而在没有聚合的情况下,每跳延迟与单个流(较小)的速率成反比。一般来说,流量聚合是不节省功的。最近,人们提出了一种节省工作的流聚合技术。然而,它的缺点是单个流的端到端延迟与共享其聚合流的其他流的突发性有关。在这里,我们展示了如何在没有这个缺点的情况下执行节省工作的流聚合,即单个流的端到端延迟与其他流的突发性无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Route discovery and capacity of ad hoc networks An algorithm for exploiting channel time selectivity in pilot-aided MIMO systems Consistent proportional delay differentiation: a fuzzy control approach Quantization bounds on Grassmann manifolds of arbitrary dimensions and MIMO communications with feedback Hash-AV: fast virus signature scanning by cache-resident filters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1