Data-driven multisubject neuroimaging analyses for naturalistic stimuli

F. Biessmann, Michael Gaebler, Jan-Peter Lamke, Uijong Ju, S. Hetzer, C. Wallraven, K. Müller
{"title":"Data-driven multisubject neuroimaging analyses for naturalistic stimuli","authors":"F. Biessmann, Michael Gaebler, Jan-Peter Lamke, Uijong Ju, S. Hetzer, C. Wallraven, K. Müller","doi":"10.1109/PRNI.2014.6858511","DOIUrl":null,"url":null,"abstract":"A central question in neuroscience is how the brain reacts to real world sensory stimuli. Naturalistic and complex (e.g. movie) stimuli are increasingly used in empirical research but their analysis often relies on considerable human efforts to label or extract stimulus features. Here we present data-driven analysis strategies that help to obtain interpretable results from multisubject neuroimaging data when complex movie stimuli are used. These analyses a) enable localization and visualization of brain activity using standard statistical parametric maps in the subspace of brain activity shared between subjects and b) facilitate interpretation of intersubject correlations. We show experimental results obtained from 50 subjects.","PeriodicalId":133286,"journal":{"name":"2014 International Workshop on Pattern Recognition in Neuroimaging","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2014.6858511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A central question in neuroscience is how the brain reacts to real world sensory stimuli. Naturalistic and complex (e.g. movie) stimuli are increasingly used in empirical research but their analysis often relies on considerable human efforts to label or extract stimulus features. Here we present data-driven analysis strategies that help to obtain interpretable results from multisubject neuroimaging data when complex movie stimuli are used. These analyses a) enable localization and visualization of brain activity using standard statistical parametric maps in the subspace of brain activity shared between subjects and b) facilitate interpretation of intersubject correlations. We show experimental results obtained from 50 subjects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自然刺激的数据驱动多主体神经成像分析
神经科学的一个核心问题是大脑如何对现实世界的感官刺激作出反应。自然和复杂(如电影)刺激越来越多地用于实证研究,但它们的分析往往依赖于大量的人类努力来标记或提取刺激特征。在这里,我们提出了数据驱动的分析策略,当使用复杂的电影刺激时,有助于从多主体神经成像数据中获得可解释的结果。这些分析a)利用受试者之间共享的脑活动子空间中的标准统计参数图实现脑活动的定位和可视化;b)促进对受试者间相关性的解释。我们展示了从50个受试者中获得的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Causal and anti-causal learning in pattern recognition for neuroimaging Gaussian mixture models improve fMRI-based image reconstruction Combining neuroanatomical and clinical data to improve individualized early diagnosis of schizophrenia in subjects at high familial risk Bayesian correlated component analysis for inference of joint EEG activation Permutation distributions of fMRI classification do not behave in accord with central limit theorem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1