Customized course advising: investigating engineering student success with incoming profiles and patterns of concurrent course enrollment

Sungjin Nam, Steven Lonn, Thomas Brown, Cinda-Sue Davis, Darryl Koch
{"title":"Customized course advising: investigating engineering student success with incoming profiles and patterns of concurrent course enrollment","authors":"Sungjin Nam, Steven Lonn, Thomas Brown, Cinda-Sue Davis, Darryl Koch","doi":"10.1145/2567574.2567589","DOIUrl":null,"url":null,"abstract":"Every college student registers for courses from a catalog of numerous offerings each term. Selecting the courses in which to enroll, and in what combinations, can dramatically impact each student's chances for academic success. Taking inspiration from the STEM Academy, we wanted to identify the characteristics of engineering students who graduate with 3.0 or above grade point average. The overall goal of the Customized Course Advising project is to determine the optimal term-by-term course selections for all engineering students based on their incoming characteristics and previous course history and performance, paying particular attention to concurrent enrollment. We found that ACT Math, SAT Math, and Advanced Placement exam can be effective measures to measure the students' academic preparation level. Also, we found that some concurrent course-enrollment patterns are highly predictive of first-term and overall academic success.","PeriodicalId":178564,"journal":{"name":"Proceedings of the Fourth International Conference on Learning Analytics And Knowledge","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth International Conference on Learning Analytics And Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2567574.2567589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Every college student registers for courses from a catalog of numerous offerings each term. Selecting the courses in which to enroll, and in what combinations, can dramatically impact each student's chances for academic success. Taking inspiration from the STEM Academy, we wanted to identify the characteristics of engineering students who graduate with 3.0 or above grade point average. The overall goal of the Customized Course Advising project is to determine the optimal term-by-term course selections for all engineering students based on their incoming characteristics and previous course history and performance, paying particular attention to concurrent enrollment. We found that ACT Math, SAT Math, and Advanced Placement exam can be effective measures to measure the students' academic preparation level. Also, we found that some concurrent course-enrollment patterns are highly predictive of first-term and overall academic success.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
定制课程建议:调查工程专业学生的成功概况和同步课程注册模式
每个大学生每学期都会从众多课程目录中注册课程。选择参加的课程,以及以何种组合,可以极大地影响每个学生学业成功的机会。从STEM学院获得灵感,我们想要确定平均绩点在3.0或以上的工程专业学生的特征。定制课程建议项目的总体目标是根据所有工程专业学生的入学特点和以前的课程历史和表现,确定最佳的学期课程选择,特别注意同时入学。我们发现ACT数学、SAT数学和大学先修课程考试是衡量学生学业准备水平的有效措施。此外,我们还发现,一些同步课程的入学模式对第一学期和整体学业成功具有很高的预测性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning analytics in CSCL with a focus on assessment: an exploratory study of activity theory-informed cluster analysis Temporal learning analytics for computer based testing Statistical discourse analysis of online discussions: informal cognition, social metacognition and knowledge creation The learning analytics & knowledge (LAK) data challenge 2014 Designing pedagogical interventions to support student use of learning analytics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1