An observing system simulation experiment (OSSE)-based
assessment of the retrieval of above-cloud temperature and water
vapor using hyperspectral infrared sounder
{"title":"An observing system simulation experiment (OSSE)-based\nassessment of the retrieval of above-cloud temperature and water\nvapor using hyperspectral infrared sounder","authors":"Jing Feng, Yi Huang, Z. Qu","doi":"10.5194/AMT-2020-518","DOIUrl":null,"url":null,"abstract":"Abstract. Measuring atmospheric conditions above convective storms is challenging. This study finds that the uncertainties in cloud properties near the top of deep convective clouds have a non-negligible impact on the TOA infrared radiances which cannot be fully eliminated by adopting a slab-cloud assumption. To overcome this issue, a synergetic retrieval method is developed. This method integrates the infrared hyperspectral observations with cloud measurements from active sensors to retrieve atmospheric temperature, water vapor, and cloud properties simultaneously. Using an observation system simulation experiment (OSSE), we found that the retrieval method is capable of detecting the spatial distribution of temperature and humidity anomalies above convective storms and reducing the root-mean-square-errors in temperature and column integrated water vapor by more than half.\n","PeriodicalId":441110,"journal":{"name":"Atmospheric Measurement Techniques Discussions","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/AMT-2020-518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract. Measuring atmospheric conditions above convective storms is challenging. This study finds that the uncertainties in cloud properties near the top of deep convective clouds have a non-negligible impact on the TOA infrared radiances which cannot be fully eliminated by adopting a slab-cloud assumption. To overcome this issue, a synergetic retrieval method is developed. This method integrates the infrared hyperspectral observations with cloud measurements from active sensors to retrieve atmospheric temperature, water vapor, and cloud properties simultaneously. Using an observation system simulation experiment (OSSE), we found that the retrieval method is capable of detecting the spatial distribution of temperature and humidity anomalies above convective storms and reducing the root-mean-square-errors in temperature and column integrated water vapor by more than half.