Frequency Selection Approach for Energy Aware Cloud Database

Chaopeng Guo, J. Pierson
{"title":"Frequency Selection Approach for Energy Aware Cloud Database","authors":"Chaopeng Guo, J. Pierson","doi":"10.1109/CAHPC.2018.8645884","DOIUrl":null,"url":null,"abstract":"A lot of cloud systems are adopted in industry and academia to face the explosion of the data volume and the arrival of the big data era. Meanwhile, energy efficiency and energy saving become major concerns for data centers where massive cloud systems are deployed. However, energy waste is quite common due to resource over-provisioning. In this paper, using Dynamic Voltage and Frequency Scaling (DVFS), a frequency selection approach is introduced to improve the energy efficiency of cloud systems in terms of resource over-provisioning. In the approach, two algorithms, Genetic Algorithm (GA) and Monte Carlo Tree Search Algorithm (MCTS), are proposed. Cloud database system is taken as an example to evaluate the approach. The results of the experiments show that the algorithms have great scalability which can be applied to a 120-nodes case with high accuracy compared to optimal solutions (up to 99.9% and 99.6% for GA and MCTS respectively). According to an optimality bound analysis, 21 % of energy can be saved at most using our frequency selection approach.","PeriodicalId":307747,"journal":{"name":"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAHPC.2018.8645884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A lot of cloud systems are adopted in industry and academia to face the explosion of the data volume and the arrival of the big data era. Meanwhile, energy efficiency and energy saving become major concerns for data centers where massive cloud systems are deployed. However, energy waste is quite common due to resource over-provisioning. In this paper, using Dynamic Voltage and Frequency Scaling (DVFS), a frequency selection approach is introduced to improve the energy efficiency of cloud systems in terms of resource over-provisioning. In the approach, two algorithms, Genetic Algorithm (GA) and Monte Carlo Tree Search Algorithm (MCTS), are proposed. Cloud database system is taken as an example to evaluate the approach. The results of the experiments show that the algorithms have great scalability which can be applied to a 120-nodes case with high accuracy compared to optimal solutions (up to 99.9% and 99.6% for GA and MCTS respectively). According to an optimality bound analysis, 21 % of energy can be saved at most using our frequency selection approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
能源感知云数据库的频率选择方法
面对数据量的爆炸式增长和大数据时代的到来,工业界和学术界大量采用云系统。同时,能源效率和节能成为部署大量云系统的数据中心的主要关注点。然而,由于资源供应过剩,能源浪费是相当普遍的。本文利用动态电压和频率缩放(DVFS),介绍了一种频率选择方法,以提高云系统在资源过剩方面的能源效率。该方法提出了遗传算法(GA)和蒙特卡罗树搜索算法(MCTS)两种算法。以云数据库系统为例对该方法进行了评价。实验结果表明,该算法具有良好的可扩展性,可以应用于120个节点的情况下,与最优解相比,准确率较高(GA和MCTS分别高达99.9%和99.6%)。根据最优界分析,使用我们的频率选择方法最多可节省21%的能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Time Predictability Features of ARM Big. LITTLE Multicores Impacts of Three Soft-Fault Models on Hybrid Parallel Asynchronous Iterative Methods Predicting the Performance Impact of Increasing Memory Bandwidth for Scientific Workflows From Java to FPGA: An Experience with the Intel HARP System Copyright
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1