Building low frequency model with Deep Learning for seismic inversion in complex geology without structural model

Tengku Mohd Syazwan Tengku Hassan, C. S. Lee, R. Bekti, J. Ting
{"title":"Building low frequency model with Deep Learning for seismic inversion in complex geology without structural model","authors":"Tengku Mohd Syazwan Tengku Hassan, C. S. Lee, R. Bekti, J. Ting","doi":"10.3997/2214-4609.202113297","DOIUrl":null,"url":null,"abstract":"Summary The conventional low frequency model (LFM) have limitations: uncertainty of spatial variability away from the wells, the uncertainty of the structural model and stratigraphic architecture. It is also challenging to build complex geology structural model. We propose using Deep Feed-forward Neural Network (DFNN) with attributes from seismic partial stacks and seismic velocity to create LFM of elastic properties for Constrained Sparse Spike Inversion. The methodology incorporates training of well curves, additional information from seismic partial stacks and trend from seismic velocity and wells. It has shorter turnaround by not having to include structural model, and is suitable for complex geological settings.","PeriodicalId":265130,"journal":{"name":"82nd EAGE Annual Conference & Exhibition","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"82nd EAGE Annual Conference & Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.202113297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary The conventional low frequency model (LFM) have limitations: uncertainty of spatial variability away from the wells, the uncertainty of the structural model and stratigraphic architecture. It is also challenging to build complex geology structural model. We propose using Deep Feed-forward Neural Network (DFNN) with attributes from seismic partial stacks and seismic velocity to create LFM of elastic properties for Constrained Sparse Spike Inversion. The methodology incorporates training of well curves, additional information from seismic partial stacks and trend from seismic velocity and wells. It has shorter turnaround by not having to include structural model, and is suitable for complex geological settings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的无构造复杂地质反演低频模型构建
传统的低频模型(LFM)存在局限性:井外空间变异性的不确定性、构造模式和地层构型的不确定性。复杂地质构造模型的建立也是一个挑战。提出了基于地震部分叠加和地震速度属性的深度前馈神经网络(Deep feedforward Neural Network, DFNN)来建立约束稀疏尖峰反演的弹性属性LFM。该方法结合了井曲线的训练、地震部分叠加的附加信息以及地震速度和井的趋势。它不需要包括构造模型,周期短,适用于复杂的地质环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Workflow to Enhance Intercept and Gradient Data Quality Seismic Monitoring of the United Downs Deep Geothermal Power Project (UDDGP) Site with Public Seismic Networks The Utility of HLD/NAC to Guide Surfactant Selection and Design Inversion of Explosive Source Land Seismic Data to Determine Source Parameters Efficient Probabilistic Inversion of Induced Earthquake Parameters in 3D Heterogeneous Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1