Smart Delivery for Goods Exploiting ML Algorithms

Eleni Boumpa, Vasileios Tsoukas, Vasileios Chioktour, M. Kalafati, G. Spathoulas, Athanasios Kakarountas
{"title":"Smart Delivery for Goods Exploiting ML Algorithms","authors":"Eleni Boumpa, Vasileios Tsoukas, Vasileios Chioktour, M. Kalafati, G. Spathoulas, Athanasios Kakarountas","doi":"10.1145/3575879.3576009","DOIUrl":null,"url":null,"abstract":"This paper presents the work conducted on providing an efficient solution to the Vehicle Routing Problem considering all stages of a delivery process. The results are promising when compared to real-life data and depict the benefits of the application of ML algorithms in all stages of the process. A platform capable to monitor the various stages of the process was developed, and a number of ML models were incorporated to provide the best solution to a multiobjective problem. The results indicate on average a maximum of 25% distance saving, and a maximum of 14% regarding the total delivery time.","PeriodicalId":164036,"journal":{"name":"Proceedings of the 26th Pan-Hellenic Conference on Informatics","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th Pan-Hellenic Conference on Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3575879.3576009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the work conducted on providing an efficient solution to the Vehicle Routing Problem considering all stages of a delivery process. The results are promising when compared to real-life data and depict the benefits of the application of ML algorithms in all stages of the process. A platform capable to monitor the various stages of the process was developed, and a number of ML models were incorporated to provide the best solution to a multiobjective problem. The results indicate on average a maximum of 25% distance saving, and a maximum of 14% regarding the total delivery time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习算法实现货物的智能交付
本文介绍了在考虑运输过程各个阶段的情况下,为车辆路线问题提供有效解决方案的工作。与现实数据相比,结果是有希望的,并描述了在过程的所有阶段应用ML算法的好处。开发了一个能够监控过程各个阶段的平台,并结合了许多ML模型,以提供多目标问题的最佳解决方案。结果表明,平均最多可节省25%的距离,最多可节省14%的总交付时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum Machine Learning in Drug Discovery: Current State and Challenges CNN-based Segmentation and Classification of Sound Streams under realistic conditions Exam Wizard e-assessment platform: new features, field test results and instructor’s experience A Neuro-Symbolic Approach for Fault Diagnosis in Smart Power Grids A combination of a Proximity technique and Weighted average for LP Problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1