Research of Fuzzy Neural Network Model Based on Quantum Clustering

Jie Sun, Sheng-nan Hao
{"title":"Research of Fuzzy Neural Network Model Based on Quantum Clustering","authors":"Jie Sun, Sheng-nan Hao","doi":"10.1109/WKDD.2009.193","DOIUrl":null,"url":null,"abstract":"Fuzzy neural network can handle non-linear, complex data, but the structure of model determination is an important and difficult issues identified. More complete results can be made .in a short period of time by the optimization network model. To address this issue, this paper presents the fusion of a quantum clustering algorithm and fuzzy c-means clustering algorithm, the fuzzy neural network structure is carried out at different levels data processing. Through the model of mining in complex industrial process, the validity of the model is tested.","PeriodicalId":143250,"journal":{"name":"2009 Second International Workshop on Knowledge Discovery and Data Mining","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Workshop on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WKDD.2009.193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Fuzzy neural network can handle non-linear, complex data, but the structure of model determination is an important and difficult issues identified. More complete results can be made .in a short period of time by the optimization network model. To address this issue, this paper presents the fusion of a quantum clustering algorithm and fuzzy c-means clustering algorithm, the fuzzy neural network structure is carried out at different levels data processing. Through the model of mining in complex industrial process, the validity of the model is tested.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于量子聚类的模糊神经网络模型研究
模糊神经网络可以处理非线性、复杂的数据,但模型结构的确定是识别的一个重要而困难的问题。该优化网络模型可以在较短的时间内得到较完整的结果。针对这一问题,本文提出了一种融合量子聚类算法和模糊c均值聚类算法的方法,利用模糊神经网络结构对不同层次的数据进行处理。通过复杂工业过程中的采矿模型,验证了模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Blind Watermarking Scheme in Contourlet Domain Based on Singular Value Decomposition Research on the Electric Power Enterprise Performance Evaluation Based on Symbiosis Theory Structured Topology for Trust in P2P Network Prediction by Integration of Phase Space Reconstruction and a Novel Evolutionary System under Deregulated Power Market Weak Signal Detection Based on Chaotic Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1