Enhanced Data Privacy Using Vertical Fragmentation and Data Anonymization Techniques

R. Sudha, G. Pooja, V. Revathy, S. D. Dilip Kumar
{"title":"Enhanced Data Privacy Using Vertical Fragmentation and Data Anonymization Techniques","authors":"R. Sudha, G. Pooja, V. Revathy, S. D. Dilip Kumar","doi":"10.3233/apc210292","DOIUrl":null,"url":null,"abstract":"The use of online net banking official sites has been rapidly increased now a days. In online transaction attackers need only little information to steal the private information of bank users and can do any kind of fraudulent activities. One of the major drawbacks of commercial losses in online banking is fraud detected by credit card fraud detection system, which has a significant impact on clients. Fraudulent transactions will be discovered after the transaction is completed in the existing novel privacy models. As a result, in this paper, three level server systems are implemented to partition the intermediate gateway with better security. User details, transaction details and account details are considered as sensitive attributes and stored in separate database. And also data suppression scheme to replace the string and numerical characters into special symbols to overcome the traditional cryptography schemes is implemented. The Quasi-Identifiers are hidden by using Anonymization algorithm so that the transactions can be done efficiently.","PeriodicalId":429440,"journal":{"name":"Recent Trends in Intensive Computing","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Trends in Intensive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/apc210292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of online net banking official sites has been rapidly increased now a days. In online transaction attackers need only little information to steal the private information of bank users and can do any kind of fraudulent activities. One of the major drawbacks of commercial losses in online banking is fraud detected by credit card fraud detection system, which has a significant impact on clients. Fraudulent transactions will be discovered after the transaction is completed in the existing novel privacy models. As a result, in this paper, three level server systems are implemented to partition the intermediate gateway with better security. User details, transaction details and account details are considered as sensitive attributes and stored in separate database. And also data suppression scheme to replace the string and numerical characters into special symbols to overcome the traditional cryptography schemes is implemented. The Quasi-Identifiers are hidden by using Anonymization algorithm so that the transactions can be done efficiently.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用垂直碎片和数据匿名化技术增强数据隐私
如今,网上银行官方网站的使用率迅速增加。在网上交易中,攻击者只需要很少的信息就可以窃取银行用户的私人信息,并可以进行各种欺诈活动。网上银行商业损失的一大弊端是信用卡欺诈检测系统检测到的欺诈,对客户的影响很大。在现有的新型隐私模型中,欺诈交易将在交易完成后被发现。因此,本文采用三级服务器系统对中间网关进行分区,保证了较高的安全性。用户详细信息、交易详细信息和帐户详细信息被视为敏感属性,存储在单独的数据库中。并提出了一种将字符串和数字字符替换为特殊符号的数据抑制方案,以克服传统的加密方案。利用匿名化算法隐藏准标识符,使交易更高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Agricultural Product Supply Chain Management Using Blockchain Technology: Concept An Image Encryption Technique Based on Logistic Sine Map and an Encrypted Image Retrieval Using DCT Frequency Study on SDN with Security Issues Using Mininet Smart Ambulance System with Remote Knowledge Communications Through Cloud Diabetes Risk Forecasting Using Logistic Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1