Scene Text Detection with Inception Text Proposal Generation Module

Hang Zhang, Jiahang Liu, Tieqiao Chen
{"title":"Scene Text Detection with Inception Text Proposal Generation Module","authors":"Hang Zhang, Jiahang Liu, Tieqiao Chen","doi":"10.1145/3318299.3318373","DOIUrl":null,"url":null,"abstract":"Most scene text detection methods based on deep learning are difficult to locate texts with multi-scale shapes. The challenges of scale robust text detection lie in two aspects: 1) scene text can be diverse and usually exists in various colors, fonts, orientations, languages, and scales in natural images. 2) Most existing detectors are difficult to locate text with large scale change. We propose a new Inception-Text module and adaptive scale scaling test mechanism for multi-oriented scene text detection. the proposed algorithm enhances performance significantly, while adding little computation. The proposed method can flexibly detect text in various scales, including horizontal, oriented and curved text. The proposed algorithm is evaluated on three recent standard public benchmarks, and show that our proposed method achieves the state-of-the-art performance on several benchmarks. Specifically, it achieves an F-measure of 93.3% on ICDAR2013, 90.47% on ICDAR2015 and 76.08%1 on ICDAR2017 MLT.","PeriodicalId":164987,"journal":{"name":"International Conference on Machine Learning and Computing","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3318299.3318373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Most scene text detection methods based on deep learning are difficult to locate texts with multi-scale shapes. The challenges of scale robust text detection lie in two aspects: 1) scene text can be diverse and usually exists in various colors, fonts, orientations, languages, and scales in natural images. 2) Most existing detectors are difficult to locate text with large scale change. We propose a new Inception-Text module and adaptive scale scaling test mechanism for multi-oriented scene text detection. the proposed algorithm enhances performance significantly, while adding little computation. The proposed method can flexibly detect text in various scales, including horizontal, oriented and curved text. The proposed algorithm is evaluated on three recent standard public benchmarks, and show that our proposed method achieves the state-of-the-art performance on several benchmarks. Specifically, it achieves an F-measure of 93.3% on ICDAR2013, 90.47% on ICDAR2015 and 76.08%1 on ICDAR2017 MLT.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
场景文本检测与Inception文本提案生成模块
大多数基于深度学习的场景文本检测方法难以定位具有多尺度形状的文本。尺度鲁棒文本检测的挑战在于两个方面:1)场景文本具有多样性,通常在自然图像中以不同的颜色、字体、方向、语言和尺度存在。2)大多数现有检测器难以定位大规模变化的文本。针对多方向场景文本检测,提出了一种新的Inception-Text模块和自适应尺度缩放测试机制。该算法在增加较少计算量的同时,显著提高了性能。该方法可以灵活地检测各种尺度的文本,包括水平文本、定向文本和弯曲文本。在最近的三个标准公共基准测试中对所提出的算法进行了评估,并表明我们提出的方法在几个基准测试中达到了最先进的性能。具体来说,它在ICDAR2013上的f值为93.3%,在ICDAR2015上为90.47%,在ICDAR2017 MLT上为76.08%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Particle Competition for Multilayer Network Community Detection Power Load Forecasting Using a Refined LSTM Research on the Application of Big Data Management in Enterprise Management Decision-making and Execution Literature Review A Flexible Approach for Human Activity Recognition Based on Broad Learning System Decentralized Adaptive Latency-Aware Cloud-Edge-Dew Architecture for Unreliable Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1