General multivariate arctangent function activated neural network approximations

G. Anastassiou
{"title":"General multivariate arctangent function activated neural network approximations","authors":"G. Anastassiou","doi":"10.33993/jnaat511-1262","DOIUrl":null,"url":null,"abstract":"Here we expose multivariate quantitative approximations of Banach space valued continuous multivariate functions on a box or \\(\\mathbb{R}^{N}\\), \\(N\\in \\mathbb{N}\\), by the multivariate normalized, quasi-interpolation, Kantorovich type and quadrature type neural network operators. We treat also the case of approximation by iterated operators of the last four types. These approximations are derived by establishing multidimensional Jackson type inequalities involving the multivariate modulus of continuity of the engaged function or its high order Frechet derivatives. \nOur multivariate operators are defined by using a multidimensional density function induced by the arctangent function. The approximations are pointwise and uniform. The related feed-forward neural network is with one hidden layer.","PeriodicalId":287022,"journal":{"name":"Journal of Numerical Analysis and Approximation Theory","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Analysis and Approximation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33993/jnaat511-1262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Here we expose multivariate quantitative approximations of Banach space valued continuous multivariate functions on a box or \(\mathbb{R}^{N}\), \(N\in \mathbb{N}\), by the multivariate normalized, quasi-interpolation, Kantorovich type and quadrature type neural network operators. We treat also the case of approximation by iterated operators of the last four types. These approximations are derived by establishing multidimensional Jackson type inequalities involving the multivariate modulus of continuity of the engaged function or its high order Frechet derivatives. Our multivariate operators are defined by using a multidimensional density function induced by the arctangent function. The approximations are pointwise and uniform. The related feed-forward neural network is with one hidden layer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一般多元反正切函数激活神经网络逼近
本文利用多元归一化、拟插值、Kantorovich型和正交型神经网络算子,在盒或\(\mathbb{R}^{N}\), \(N\in \mathbb{N}\)上给出了Banach空间值连续多元函数的多元定量逼近。我们还处理了用后四种类型的迭代算子逼近的情况。这些近似是通过建立涉及所接合函数的多变量连续模或其高阶Frechet导数的多维Jackson型不等式推导出来的。我们的多元算子是通过使用由arctan函数引起的多维密度函数来定义的。近似是逐点均匀的。相关的前馈神经网络只有一个隐藏层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptation of the composite finite element framework for semilinear parabolic problems A comparative study of Filon-type rules for oscillatory integrals Local convergence analysis of frozen Steffensen-type methods under generalized conditions Extension of primal-dual interior point method based on a kernel function for linear fractional problem Nonlinear random extrapolation estimates of \(\pi\) under Dirichlet distributions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1