Energy-efficient processing of spatio-temporal queries in wireless sensor networks

Markus Bestehorn, Klemens Böhm, Erik Buchmann, Stephan Kessler
{"title":"Energy-efficient processing of spatio-temporal queries in wireless sensor networks","authors":"Markus Bestehorn, Klemens Böhm, Erik Buchmann, Stephan Kessler","doi":"10.1145/1869790.1869838","DOIUrl":null,"url":null,"abstract":"Research on Moving Object Databases (MOD) has resulted in sophisticated query mechanisms for moving objects and regions. Wireless Sensor Networks (WSN) support a wide range of applications that track or monitor moving objects. However, applying the concepts of MOD to WSN is difficult: While MOD tend to require precise object positions, the information acquired in WSN may be incomplete or inaccurate. This may be because of limited detection ranges, node failures or detection mechanisms that only determine if an object is in the vicinity of a node, but not its exact position. In this paper, we study the processing of spatiotemporal queries in WSN. First, we adapt the models used in MOD to WSN while keeping their semantical depth. Second, we propose two approaches for processing such queries in WSN in-network instead of collecting all data at the base station. Our experimental evaluations using simulation as well as a Sun SPOT deployment show that our measures reduce communication by up to 89%, compared to collecting all information at the base station.","PeriodicalId":359068,"journal":{"name":"ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1869790.1869838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Research on Moving Object Databases (MOD) has resulted in sophisticated query mechanisms for moving objects and regions. Wireless Sensor Networks (WSN) support a wide range of applications that track or monitor moving objects. However, applying the concepts of MOD to WSN is difficult: While MOD tend to require precise object positions, the information acquired in WSN may be incomplete or inaccurate. This may be because of limited detection ranges, node failures or detection mechanisms that only determine if an object is in the vicinity of a node, but not its exact position. In this paper, we study the processing of spatiotemporal queries in WSN. First, we adapt the models used in MOD to WSN while keeping their semantical depth. Second, we propose two approaches for processing such queries in WSN in-network instead of collecting all data at the base station. Our experimental evaluations using simulation as well as a Sun SPOT deployment show that our measures reduce communication by up to 89%, compared to collecting all information at the base station.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无线传感器网络中时空查询的节能处理
对移动对象数据库(MOD)的研究已经产生了复杂的移动对象和区域查询机制。无线传感器网络(WSN)支持跟踪或监控移动物体的广泛应用。然而,将MOD的概念应用于WSN是困难的:MOD往往要求精确的目标位置,而在WSN中获取的信息可能是不完整或不准确的。这可能是因为有限的检测范围、节点故障或检测机制只能确定对象是否在节点附近,而不能确定其确切位置。本文研究了无线传感器网络中时空查询的处理方法。首先,我们在保持模型语义深度的前提下,将MOD中使用的模型适应于WSN。其次,我们提出了两种在无线传感器网络中处理此类查询的方法,而不是在基站收集所有数据。我们使用模拟和Sun SPOT部署进行的实验评估表明,与在基站收集所有信息相比,我们的措施最多可减少89%的通信。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pai Geolocation Time Geography Stationarity Cognitive Mapping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1