Toward an Elastic Data Transfer Infrastructure

Joaquín Chung, Zhengchun Liu, R. Kettimuthu, Ian T Foster
{"title":"Toward an Elastic Data Transfer Infrastructure","authors":"Joaquín Chung, Zhengchun Liu, R. Kettimuthu, Ian T Foster","doi":"10.1109/eScience.2019.00036","DOIUrl":null,"url":null,"abstract":"Data transfer over wide area networks is an integral part of many science workflows that must, for example, move data from scientific facilities to remote resources for analysis, sharing, and storage. Yet despite continued enhancements in data transfer infrastructure (DTI), our previous analyses of approximately 40 billion GridFTP command logs collected over four years from the Globus transfer service show that data transfer nodes (DTNs) are idle (i.e., are performing no transfers) 94.3% of the time. On the other hand, we have also observed periods in which CPU resource scarcity negatively impacts DTN throughput. Motivated by the opportunity to optimize DTI performance, we present here an elastic DTI architecture in which the pool of nodes allocated to DTN activities expands and shrinks over time, based on demand. Our results show that this elastic DTI can save up to ~95% of resources compared with a typical static DTN deployment, with the median slowdown incurred remaining close to one for most of the evaluated scenarios.","PeriodicalId":142614,"journal":{"name":"2019 15th International Conference on eScience (eScience)","volume":"11 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Conference on eScience (eScience)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2019.00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Data transfer over wide area networks is an integral part of many science workflows that must, for example, move data from scientific facilities to remote resources for analysis, sharing, and storage. Yet despite continued enhancements in data transfer infrastructure (DTI), our previous analyses of approximately 40 billion GridFTP command logs collected over four years from the Globus transfer service show that data transfer nodes (DTNs) are idle (i.e., are performing no transfers) 94.3% of the time. On the other hand, we have also observed periods in which CPU resource scarcity negatively impacts DTN throughput. Motivated by the opportunity to optimize DTI performance, we present here an elastic DTI architecture in which the pool of nodes allocated to DTN activities expands and shrinks over time, based on demand. Our results show that this elastic DTI can save up to ~95% of resources compared with a typical static DTN deployment, with the median slowdown incurred remaining close to one for most of the evaluated scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
迈向弹性数据传输基础设施
广域网上的数据传输是许多科学工作流程的一个组成部分,例如,必须将数据从科学设施移动到远程资源以进行分析、共享和存储。然而,尽管数据传输基础设施(DTI)不断增强,我们之前对四年来从Globus传输服务收集的大约400亿个GridFTP命令日志的分析表明,数据传输节点(dtn)在94.3%的时间里是空闲的(即不执行传输)。另一方面,我们还观察到CPU资源稀缺性对DTN吞吐量产生负面影响的时期。在优化DTI性能的机会的激励下,我们在这里提出了一个弹性DTI体系结构,其中分配给DTN活动的节点池根据需求随着时间的推移而扩展和缩小。我们的结果表明,与典型的静态DTN部署相比,这种弹性DTI可以节省高达95%的资源,在大多数评估场景中,所产生的中位数减速仍然接近1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accelerating Scientific Discovery with SCAIGATE Science Gateway Contextual Linking between Workflow Provenance and System Performance Logs BBBlockchain: Blockchain-Based Participation in Urban Development Streaming Workflows on Edge Devices to Process Sensor Data on a Smart Manufacturing Platform Serverless Science for Simple, Scalable, and Shareable Scholarship
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1