Comparison of the Legendre, Zernike and Pseudo-Zernike Moments for Feature Extraction in Iris Recognition

Seyed Jabbar Hosaini, S. Alirezaee, M. Ahmadi, S. Makki
{"title":"Comparison of the Legendre, Zernike and Pseudo-Zernike Moments for Feature Extraction in Iris Recognition","authors":"Seyed Jabbar Hosaini, S. Alirezaee, M. Ahmadi, S. Makki","doi":"10.1109/CICN.2013.54","DOIUrl":null,"url":null,"abstract":"In this paper we compare the performance of Legendre moments, Zernike moments and Pseudo-Zernike moments in feature extraction for iris recognition. We have increased the moment orders until the best recognition rate is achieved. Robustness of these moments in various orders has been evaluated in presence of White Gaussian Noise. Numerical results indicate that recognition rate by the Legendre, Zernike and Pseudo-Zernike moments in higher orders are approximately identical. However, average computation time for feature extraction is 4.5, 18 and. 75 seconds respectively for the Legendre, Zernike and Pseudo-Zernike moments of order 14. On the other hand, the result indicates the Legendre moment is more robust than the others against the white Gaussian noise.","PeriodicalId":415274,"journal":{"name":"2013 5th International Conference on Computational Intelligence and Communication Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 5th International Conference on Computational Intelligence and Communication Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICN.2013.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this paper we compare the performance of Legendre moments, Zernike moments and Pseudo-Zernike moments in feature extraction for iris recognition. We have increased the moment orders until the best recognition rate is achieved. Robustness of these moments in various orders has been evaluated in presence of White Gaussian Noise. Numerical results indicate that recognition rate by the Legendre, Zernike and Pseudo-Zernike moments in higher orders are approximately identical. However, average computation time for feature extraction is 4.5, 18 and. 75 seconds respectively for the Legendre, Zernike and Pseudo-Zernike moments of order 14. On the other hand, the result indicates the Legendre moment is more robust than the others against the white Gaussian noise.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
虹膜识别中特征提取的Legendre、Zernike和Pseudo-Zernike矩的比较
本文比较了Legendre矩、Zernike矩和Pseudo-Zernike矩在虹膜识别特征提取中的性能。我们不断增加矩阶,直到达到最佳识别率。在存在高斯白噪声的情况下,对这些矩在不同阶次的鲁棒性进行了评估。数值结果表明,高阶的Legendre、Zernike和Pseudo-Zernike矩的识别率近似相同。然而,特征提取的平均计算时间分别为4.5、18和18。14阶的Legendre、Zernike和Pseudo-Zernike力矩分别为75秒。另一方面,结果表明,勒让德矩对高斯白噪声的鲁棒性优于其他矩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on the Model of Legacy Software Reuse Based on Code Clone Detection QoS in Interconnection of Next Generation Networks Post Silicon Debugging Approach for USB2.0: Case Study of Enumeration Based on Fiber-Optic Sensor and the Light Intensity Changes Vehicle Dynamic Weighing System Comparison of AOMDV Routing Protocol under IEEE802.11 and TDMA Mac Layer Protocol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1