ArchiMeDe @ DANKMEMES: A New Model Architecture for Meme Detection

Jinen Setpal, Gabriele Sarti
{"title":"ArchiMeDe @ DANKMEMES: A New Model Architecture for Meme Detection","authors":"Jinen Setpal, Gabriele Sarti","doi":"10.4000/BOOKS.AACCADEMIA.7405","DOIUrl":null,"url":null,"abstract":"English. We introduce ArchiMeDe, a multimodal neural network-based architecture used to solve the DANKMEMES meme detections subtask at the 2020 EVALITA campaign. The system incor-porates information from visual and textual sources through a multimodal neural ensemble to predict if input images and their respective metadata are memes or not. Each pre-trained neural network in the ensemble is first fine-tuned indi-vidually on the training dataset to perform domain adaptation. Learned text and visual representations are then concatenated to obtain a single multimodal embedding","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.7405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

English. We introduce ArchiMeDe, a multimodal neural network-based architecture used to solve the DANKMEMES meme detections subtask at the 2020 EVALITA campaign. The system incor-porates information from visual and textual sources through a multimodal neural ensemble to predict if input images and their respective metadata are memes or not. Each pre-trained neural network in the ensemble is first fine-tuned indi-vidually on the training dataset to perform domain adaptation. Learned text and visual representations are then concatenated to obtain a single multimodal embedding
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ArchiMeDe @ DANKMEMES:模因检测的新模型架构
英语。我们介绍了ArchiMeDe,这是一种基于多模态神经网络的架构,用于解决2020年EVALITA竞选中的DANKMEMES模因检测子任务。该系统通过多模态神经系统集成来自视觉和文本来源的信息,以预测输入图像及其各自的元数据是否为模因。集成中的每个预训练神经网络首先在训练数据集上单独微调以执行域适应。然后将学习到的文本和视觉表示连接起来以获得单一的多模态嵌入
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DIACR-Ita @ EVALITA2020: Overview of the EVALITA2020 Diachronic Lexical Semantics (DIACR-Ita) Task QMUL-SDS @ DIACR-Ita: Evaluating Unsupervised Diachronic Lexical Semantics Classification in Italian (short paper) By1510 @ HaSpeeDe 2: Identification of Hate Speech for Italian Language in Social Media Data (short paper) HaSpeeDe 2 @ EVALITA2020: Overview of the EVALITA 2020 Hate Speech Detection Task KIPoS @ EVALITA2020: Overview of the Task on KIParla Part of Speech Tagging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1