An Online Power System Dynamics Prediction Based on Deep Neural Network

Bin Zhang, Jian Han, Yanlin Ren, Huimin Wen, Ziye Song, Qirui Gan, Ran Wei, Xin Dang, Bin Zhou
{"title":"An Online Power System Dynamics Prediction Based on Deep Neural Network","authors":"Bin Zhang, Jian Han, Yanlin Ren, Huimin Wen, Ziye Song, Qirui Gan, Ran Wei, Xin Dang, Bin Zhou","doi":"10.1145/3277453.3277464","DOIUrl":null,"url":null,"abstract":"Building Power analysis has drawn more and more attention in recent years. In this paper, we present a system for online power prediction for the public building. It is based on a 4-layers Deep Neural Network that use architectural metrics of the physical machines collected dynamically by our system to predict the physical machine power consumption. A real implementation of our system shows that the prediction accuracy could reach 76.50%.","PeriodicalId":186835,"journal":{"name":"Proceedings of the 2018 International Conference on Electronics and Electrical Engineering Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Electronics and Electrical Engineering Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3277453.3277464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Building Power analysis has drawn more and more attention in recent years. In this paper, we present a system for online power prediction for the public building. It is based on a 4-layers Deep Neural Network that use architectural metrics of the physical machines collected dynamically by our system to predict the physical machine power consumption. A real implementation of our system shows that the prediction accuracy could reach 76.50%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度神经网络的电力系统动态在线预测
近年来,建筑动力分析越来越受到人们的关注。本文提出了一种公共建筑电力在线预测系统。它基于一个4层深度神经网络,使用我们的系统动态收集的物理机器的架构指标来预测物理机器的功耗。系统的实际应用表明,预测精度可达76.50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Power Quality Comprehensive Evaluation of DC Distribution Network Based on Maximizing Deviation and Fuzzy Matter-Element Model Resource Allocation for System Throughput Maximization Based on Mobile Edge Computing Design of Sparse Cosine-Modulated Filter Banks Using BP Neural Network Inrush Current Suppression of High Voltage Shunt Capacitors Based on Precharge Statistical Shape Model Generation Using K-means Clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1